Journal Home > Volume 16 , Issue 6

Considering limited energy density of current lithium metal batteries (LMBs) due to low capacity of traditional intercalation-type cathodes, alternative high-energy cathodes are eagerly demanded. In this regard, conversion-type metal fluoride/sulfide/oxide cathodes have emerged great attention owing to their high theoretical specific capacities, supplying outstanding energy density for advanced LMBs. However, their low ionic/electrical conductivities, huge volume changes, sluggish reaction kinetics, and severe side reactions result in quick capacity fading and poor rate capability of LMBs. Recent research efforts on the conversion-type cathodes have brought new insights, as well as effective approaches toward realizing their excellent electrochemical performances. Here, the recent discoveries, challenges, and optimizing strategies including morphology regulation, phase structure engineering, surface coating, heterostructure construction, binder functionalization, and electrolyte design, are reviewed in detail. Finally, perspectives on the conversion-type metal fluoride/sulfide/oxide cathodes in LMBs are provided. It is believed that the conversion-type cathodes hold a promising future for the next-generation LMBs with high energy density.


menu
Abstract
Full text
Outline
About this article

Tactics to optimize conversion-type metal fluoride/sulfide/oxide cathodes toward advanced lithium metal batteries

Show Author's information Dong Yan1Hui Ying Yang2Ying Bai1( )
International Joint Laboratory of New Energy Materials and Devices of Henan Province, School of Physics & Electronics, Henan University, Kaifeng 475004, China
Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore

Abstract

Considering limited energy density of current lithium metal batteries (LMBs) due to low capacity of traditional intercalation-type cathodes, alternative high-energy cathodes are eagerly demanded. In this regard, conversion-type metal fluoride/sulfide/oxide cathodes have emerged great attention owing to their high theoretical specific capacities, supplying outstanding energy density for advanced LMBs. However, their low ionic/electrical conductivities, huge volume changes, sluggish reaction kinetics, and severe side reactions result in quick capacity fading and poor rate capability of LMBs. Recent research efforts on the conversion-type cathodes have brought new insights, as well as effective approaches toward realizing their excellent electrochemical performances. Here, the recent discoveries, challenges, and optimizing strategies including morphology regulation, phase structure engineering, surface coating, heterostructure construction, binder functionalization, and electrolyte design, are reviewed in detail. Finally, perspectives on the conversion-type metal fluoride/sulfide/oxide cathodes in LMBs are provided. It is believed that the conversion-type cathodes hold a promising future for the next-generation LMBs with high energy density.

Keywords: electrochemical performances, lithium metal batteries, conversion-type cathodes, optimizing strategies

References(180)

[1]

Chen, Y. M.; Wang, Z. Q.; Li, X. Y.; Yao, X. H.; Wang, C.; Li, Y. T.; Xue, W. J.; Yu, D. W.; Kim, S. Y.; Yang, F. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 2020, 578, 251–255.

[2]

Thackeray, M. M.; Amine, K. Layered Li-Ni-Mn-Co oxide cathodes. Nat. Energy 2021, 6, 933.

[3]

Yang, X. G.; Liu, T.; Wang, C. Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 2021, 6, 176–185.

[4]
Nie, L.; Chen, S. J.; Liu, W. Challenges and strategies of lithium-rich layered oxides for Li-ion batteries. Nano Res., in press, https://doi.org/10.1007/s12274-022-4707-6.
DOI
[5]

Manthiram, A.; Goodenough, J. B. Layered lithium cobalt oxide cathodes. Nat. Energy 2021, 6, 323.

[6]
Tang, C.; Chen, Y. W.; Zhang, Z. F.; Li, W. Q.; Jian, J. H.; Jie, Y. L.; Huang, F. Y.; Han, Y. H.; Li, W. X.; Ai, F. P. et al. Stable cycling of practical high-voltage LiCoO2 pouch cell via electrolyte modification. Nano Res., in press, https://doi.org/10.1007/s12274-022-4955-5.
DOI
[7]

Masias, A.; Marcicki, J.; Paxton, W. A. Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 2021, 6, 621–630.

[8]

Kong, W. J.; Zhang, J. C.; Wong, D.; Yang, W. Y.; Yang, J. B.; Schulz, C.; Liu, X. F. Tailoring Co 3d and O 2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew. Chem., Int. Ed. 2021, 60, 27102–27112.

[9]

Li, Y. Q.; Lu, Y. X.; Adelhelm, P.; Titirici, M. M.; Hu, Y. S. Intercalation chemistry of graphite: Alkali metal ions and beyond. Chem. Soc. Rev. 2019, 48, 4655–4687.

[10]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[11]

Wang, L. P.; Wang, T. S.; Yin, Y. X.; Shi, J. L.; Wang, C. R.; Guo, Y. G. Exploiting lithium-depleted cathode materials for solid-state Li metal batteries. Adv. Energy Mater. 2019, 9, 1901335.

[12]

Jin, C. B.; Liu, T. F.; Sheng, O. W.; Li, M.; Liu, T. C.; Yuan, Y. F.; Nai, J. W.; Ju, Z. J.; Zhang, W. K.; Liu, Y. J. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 2021, 6, 378–387.

[13]

Wang, L. P.; Zhang, L.; Wang, Q. J.; Li, W. J.; Wu, B.; Jia, W. S.; Wang, Y. H.; Li, J. Z.; Li, H. Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Mater. 2018, 10, 16–23.

[14]

Xu, Y.; Li, T.; Wang, L. P.; Kang, Y. J. Interlayered dendrite-free lithium plating for high-performance lithium-metal batteries. Adv. Mater. 2019, 31, 1901662.

[15]

Cao, W. Z.; Lu, J. Z.; Zhou, K.; Sun, G. C.; Zheng, J. Y.; Geng, Z.; Li, H. Organic–inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy 2022, 95, 106983.

[16]

Jiao, J. Y.; Lai, G. M.; Zhao, L.; Lu, J. Z.; Li, Q. D.; Xu, X. Q.; Jiang, Y.; He, Y. B.; Ouyang, C. Y.; Pan, F. et al. Self-healing mechanism of lithium in lithium metal. Adv. Sci. 2022, 9, 2105574.

[17]

Cao, W. Z.; Li, Q.; Yu, X. Q.; Li, H. Controlling Li deposition below the interface. eScience 2022, 2, 47–78.

[18]

Deng, W.; Yin, X.; Bao, W.; Zhou, X. F.; Hu, Z. Y.; He, B. Y.; Qiu, B.; Meng, Y. S.; Liu, Z. P. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 2022, 7, 1031–1041.

[19]

Louli, A. J.; Metzger, M. Synergies for longer cycle life. Nat. Energy 2021, 6, 574–575.

[20]

Vishnugopi, B. S.; Mukherjee, P. P. “Dead” lithium or back from the “dead”? Joule 2022, 6, 291–293.

[21]

Xie, H. Y.; Hao, Z. M.; Xie, S.; Ye, Y. D.; Zhang, W.; Sun, Z. W.; Jin, S.; Ji, H. X.; Chen, J. Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. Nano Res. 2022, 15, 5143–5152.

[22]

Ding, D.; Zhang, B.; Wang, L.; Dou, J. M.; Zhai, Y. J.; Xu, L. Q. Flexible Mg3N2 layer regulates lithium plating-striping for stable and high capacity lithium metal anodes. Nano Res. 2022, 15, 8128–8135.

[23]

Wang, H. P.; Liu, J. D.; He, J.; Qi, S. H.; Wu, M. G.; Li, F.; Huang, J. D.; Huang, Y.; Ma, J. M. Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2022, 2, 557–565.

[24]

Piao, N.; Liu, S. F.; Zhang, B.; Ji, X.; Fan, X. L.; Wang, L.; Wang, P. F.; Jin, T.; Liou, S. C.; Yang, H. C. et al. Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 2021, 6, 1839–1848.

[25]

Wu, D. X.; He, J.; Liu, J. D.; Wu, M. G.; Qi, S. H.; Wang, H. P.; Huang, J. D.; Li, F.; Tang, D. L.; Ma, J. M. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy Mater. 2022, 12, 2200337.

[26]

Gao, X. L.; Liu, X. H.; Xie, W. L.; Zhang, L. S.; Yang, S. C. Multiscale observation of Li plating for lithium-ion batteries. Rare Met. 2021, 40, 3038–3048.

[27]

Lu, P. S.; Wu, D. X.; Chen, L. Q.; Li, H.; Wu, F. Air stability of solid-state sulfide batteries and electrolytes. Electrochem. Energy Rev. 2022, 5, 3.

[28]

Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.

[29]

Wang, L. P.; Zhang, X. D.; Wang, T. S.; Yin, Y. X.; Shi, J. L.; Wang, C. R.; Guo, Y. G. Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers. Adv. Energy Mater. 2018, 8, 1801528.

[30]

Wang, J. Y.; Chen, R. S.; Yang, L. F.; Zan, M. W.; Chen, P. H.; Li, Y.; Li, W. J.; Yu, H. G.; Yu, X. Q.; Huang, X. J. et al. Raising the intrinsic safety of layered oxide cathodes by surface re-lithiation with LLZTO garnet-type solid electrolytes. Adv. Mater. 2022, 34, 2200655.

[31]

Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 2022, 21, 1050–1056.

[32]

Zhang, K. G.; Niu, C. Q.; Yu, C. B.; Zhang, L.; Xu, Y. X. Highly crystalline vinylene-linked covalent organic frameworks enhanced solid polycarbonate electrolyte for dendrite-free solid lithium metal batteries. Nano Res. 2022, 15, 8083–8090.

[33]

Li, T. Z.; Pan, X. L.; Yang, Z. Z.; Liu, F.; Yu, K. S.; Xu, L.; Mai, L. Q. Fabricating ion-conducting channel in SU-8 matrix for high-performance patternable polymer electrolytes. Nano Res. 2023, 16, 496–502.

[34]

Zhang, J. B.; Zhu, G. X.; Li, H.; Ju, J. W.; Gu, J. W.; Xu, R. Z.; Jin, S. M.; Zhou, J. Q.; Chen, B. B. Novel Zr-doped β-Li3PS4 solid electrolyte for all-solid-state lithium batteries with a combined experimental and computational approach. Nano Res. 2023, 16, 3516–3523.

[35]

Bi, L. N.; Wei, X. B.; Qiu, Y. H.; Song, Y. C.; Long, X.; Chen, Z.; Wang, S. Z.; Liao, J. X. A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries. Nano Res. 2023, 16, 1717–1725.

[36]

Yang, G. H.; Liang, X. H.; Zheng, S. S.; Chen, H. B.; Zhang, W. T.; Li, S. N.; Pan, F. Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes. eScience 2022, 2, 79–86.

[37]

Wan, J.; Yan, H. J.; Wen, R.; Wan, L. J. In situ visualization of electrochemical processes in solid-state lithium batteries. ACS Energy Lett. 2022, 7, 2988–3002.

[38]

Zhao, C.; Liu, Z. Q.; Weng, W.; Wu, M.; Yan, X. Y.; Yang, J.; Lu, H. M.; Yao, X. Y. Stabilized cathode/sulfide solid electrolyte interface via Li2ZrO3 coating for all-solid-state batteries. Rare Met. 2022, 41, 3639–3645.

[39]

Kou, Z. Y.; Lu, Y.; Miao, C.; Li, J. Q.; Liu, C. J.; Xiao, W. High-performance sandwiched hybrid solid electrolytes by coating polymer layers for all-solid-state lithium-ion batteries. Rare Met. 2021, 40, 3175–3184.

[40]

Liu, X. M.; Garcia-Mendez, R.; Lupini, A. R.; Cheng, Y. Q.; Hood, Z. D.; Han, F. D.; Sharafi, A.; Idrobo, J. C.; Dudney, N. J.; Wang, C. S. et al. Local electronic structure variation resulting in Li “filament” formation within solid electrolytes. Nat. Mater. 2021, 20, 1485–1490.

[41]

Andre, D.; Kim, S. J.; Lamp, P.; Lux, S. F.; Maglia, F.; Paschos, O.; Stiaszny, B. Future generations of cathode materials: An automotive industry perspective. J. Mater. Chem. A 2015, 3, 6709–6732.

[42]

Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

[43]

Wu, W.; Wang, M.; Wang, J.; Wei, Z. Y.; Zhang, T.; Chi, S. S.; Wang, C. Y.; Deng, Y. H. Transition metal oxides as lithium-free cathodes for solid-state lithium metal batteries. Nano Energy 2020, 74, 104867.

[44]

Olbrich, L. F.; Xiao, A. W.; Pasta, M. Conversion-type fluoride cathodes: Current state of the art. Curr. Opin. Electrochem. 2021, 30, 100779.

[45]

Bensalah, N.; Dawood, H. Review on synthesis, characterizations, and electrochemical properties of cathode materials for lithium ion batteries. J. Mater. Sci. Eng. 2016, 5, 1000258.

[46]

Li, L. S.; Jacobs, R.; Gao, P.; Gan, L. Y.; Wang, F.; Morgan, D.; Jin, S. Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 2016, 138, 2838–2848.

[47]

Hua, X.; Eggeman, A. S.; Castillo-Martínez, E.; Robert, R.; Geddes, H. S.; Lu, Z. H.; Pickard, C. J.; Meng, W.; Wiaderek, K. M.; Pereira, N. et al. Revisiting metal fluorides as lithium-ion battery cathodes. Nat. Mater. 2021, 20, 841–850.

[48]

Xiao, A. W.; Lee, H. J.; Capone, I.; Robertson, A.; Wi, T. U.; Fawdon, J.; Wheeler, S.; Lee, H. W.; Grobert, N.; Pasta, M. Understanding the conversion mechanism and performance of monodisperse FeF2 nanocrystal cathodes. Nat. Mater. 2020, 19, 644–654.

[49]

Karki, K.; Wu, L. J.; Ma, Y.; Armstrong, M. J.; Holmes, J. D.; Garofalini, S. H.; Zhu, Y. M.; Stach, E. A.; Wang, F. Revisiting conversion reaction mechanisms in lithium batteries: Lithiation-driven topotactic transformation in FeF2. J. Am. Chem. Soc. 2018, 140, 17915–17922.

[50]

Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.

[51]

Chen, K. Y.; Lei, M.; Yao, Z. G.; Zheng, Y. J.; Hu, J. L.; Lai, C. Z.; Li, C. L. Construction of solid–liquid fluorine transport channel to enable highly reversible conversion cathodes. Sci. Adv. 2021, 7, eabj1491.

[52]

Hu, J. L.; Chen, K. Y.; Yao, Z. G.; Li, C. L. Unlocking solid-state conversion batteries reinforced by hierarchical microsphere stacked polymer electrolyte. Sci. Bull. 2021, 66, 694–707.

[53]

Huang, Q.; Turcheniuk, K.; Ren, X. L.; Magasinski, A.; Song, A. Y.; Xiao, Y. R.; Kim, D.; Yushin, G. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 2019, 18, 1343–1349.

[54]

Seo, J. K.; Cho, H. M.; Takahara, K.; Chapman, K. W.; Borkiewicz, O. J.; Sina, M.; Meng, Y. S. Revisiting the conversion reaction voltage and the reversibility of the CuF2 electrode in Li-ion batteries. Nano Res. 2017, 10, 4232–4244.

[55]

Zheng, S. Y.; Hong, C. Y.; Guan, X. Y.; Xiang, Y. X.; Liu, X. S.; Xu, G. L.; Liu, R.; Zhong, G. M.; Zheng, F.; Li, Y. X. et al. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. J. Power Sources 2019, 412, 336–343.

[56]

Huang, Q.; Turcheniuk, K.; Ren, X. L.; Magasinski, A.; Gordon, D.; Bensalah, N.; Yushin, G. Insights into the effects of electrolyte composition on the performance and stability of FeF2 conversion-type cathodes. Adv. Energy Mater. 2019, 9, 1803323.

[57]

Cui, Y. Y.; Sukkurji, P. A.; Wang, K.; Azmi, R.; Nunn, A. M.; Hahn, H.; Breitung, B.; Ting, Y. Y.; Kowalski, P. M.; Kaghazchi, P. et al. High entropy fluorides as conversion cathodes with tailorable electrochemical performance. J. Energy Chem. 2022, 72, 342–351.

[58]

Kim, S.; Liu, J. Y.; Sun, K.; Wang, J. J.; Dillon, S. J.; Braun, P. V. Improved performance in FeF2 conversion cathodes through use of a conductive 3D scaffold and Al2O3 ALD coating. Adv. Funct. Mater. 2017, 27, 1702783.

[59]

Wu, F. X.; Srot, V.; Chen, S. Q.; Lorger, S.; van Aken, P. A.; Maier, J.; Yu, Y. 3D honeycomb architecture enables a high-rate and long-life iron(III) fluoride-lithium battery. Adv. Mater. 2019, 31, 1905146.

[60]

Fu, W. B.; Zhao, E. B.; Sun, Z. F.; Ren, X. L.; Magasinski, A.; Yushin, G. Iron fluoride-carbon nanocomposite nanofibers as free-standing cathodes for high-energy lithium batteries. Adv. Funct. Mater. 2018, 28, 1801711.

[61]

Fan, X. L.; Hu, E. Y.; Ji, X.; Zhu, Y. Z.; Han, F. D.; Hwang, S.; Liu, J.; Bak, S.; Ma, Z. H.; Gao, T. et al. High energy-density and reversibility of iron fluoride cathode enabled via an intercalation-extrusion reaction. Nat. Commun. 2018, 9, 2324.

[62]

Ju, L. C.; Wang, G. Z.; Liang, K.; Wang, M. Y.; Sterbinsky, G. E.; Feng, Z. X.; Yang, Y. Significantly improved cyclability of conversion-type transition metal oxyfluoride cathodes by homologous passivation layer reconstruction. Adv. Energy Mater. 2020, 10, 1903333.

[63]

Wang, X. R.; Gu, W. T.; Lee, J. T.; Nitta, N.; Benson, J.; Magasinski, A.; Schauer, M. W.; Yushin, G. Carbon nanotube-CoF2 multifunctional cathode for lithium ion batteries: Effect of electrolyte on cycle stability. Small 2015, 11, 5164–5173.

[64]

Wu, F. X.; Srot, V.; Chen, S. Q.; Zhang, M. Y.; van Aken, P. A.; Wang, Y.; Maier, J.; Yu, Y. Metal-organic framework-derived nanoconfinements of CoF2 and mixed-conducting wiring for high-performance metal fluoride-lithium battery. ACS Nano 2021, 15, 1509–1518.

[65]

Krahl, T.; Winkelmann, F. M.; Martin, A.; Pinna, N.; Kemnitz, E. Novel synthesis of anhydrous and hydroxylated CuF2 nanoparticles and their potential for lithium ion batteries. Chem.—Eng. J. 2018, 24, 7177–7187.

[66]

Wang, J.; Fang, J. J.; Zhao, H. L.; Zhang, Z. J.; Li, Z. L. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries. Carbon 2021, 171, 171–178.

[67]

Xia, J. L.; Wang, Z. Y.; Rodrig, N. D.; Nan, B.; Zhang, J. X.; Zhang, W. R.; Lucht, B. L.; Yang, C. Y.; Wang, C. S. Super-reversible CuF2 cathodes enabled by Cu2+-coordinated alginate. Adv. Mater. 2022, 34, 2205229.

[68]

Su, Y.; Chen, J. Z.; Li, H.; Sun, H. M.; Yang, T. T.; Liu, Q. N.; Ichikawa, S.; Zhang, X. D.; Zhu, D. D.; Zhao, J. et al. Enabling long cycle life and high rate iron difluoride based lithium batteries by in situ cathode surface modification. Adv. Sci. 2022, 9, 2201419.

[69]

Chen, Y. W.; Li, J. M.; Lei, Z. W.; Huo, Y. K.; Yang, L. L.; Zeng, S. Y.; Ding, H. H.; Qin, Y.; Jie, Y. L.; Huang, F. Y. et al. Hollow CuS nanoboxes as Li-free cathode for high-rate and long-life lithium metal batteries. Adv. Energy Mater. 2020, 10, 1903401.

[70]

Zhao, Y.; Wei, K. Y.; Wu, H. L.; Ma, S. P.; Li, J.; Cui, Y. X.; Dong, Z. H.; Cui, Y. H.; Li, C. L. LiF splitting catalyzed by dual metal nanodomains for an efficient fluoride conversion cathode. ACS Nano 2019, 13, 2490–2500.

[71]

Hwang, S.; Ji, X.; Bak, S. M.; Sun, K.; Bai, J. M.; Fan, X. L.; Gan, H.; Wang, C. S.; Su, D. Revealing reaction pathways of collective substituted iron fluoride electrode for lithium ion batteries. ACS Nano 2020, 14, 10276–10283.

[72]

Gordon, D.; Huang, Q.; Magasinski, A.; Ramanujapuram, A.; Bensalah, N.; Yushin, G. Mixed metal difluorides as high capacity conversion-type cathodes: Impact of composition on stability and performance. Adv. Energy Mater. 2018, 8, 1800213.

[73]

Jiang, Q.; Xiong, P. X.; Liu, J. J.; Xie, Z.; Wang, Q. C.; Yang, X. Q.; Hu, E. Y.; Cao, Y.; Sun, J.; Xu, Y. H. et al. A redox-active 2D metal-organic framework for efficient lithium storage with extraordinary high capacity. Angew. Chem., Int. Ed. 2020, 59, 5273–5277.

[74]

Santhosha, A. L.; Nazer, N.; Koerver, R.; Randau, S.; Richter, F. H.; Weber, D. A.; Kulisch, J.; Adermann, T.; Janek, J.; Adelhelm, P. Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries. Adv. Energy Mater. 2020, 10, 2002394.

[75]

Wygant, B. R.; Merrill, L. C.; Harrison, K. L.; Talin, A. A.; Ashby, D. S.; Lambert, T. N. The role of electrolyte composition in enabling Li metal-iron fluoride full-cell batteries. Adv. Sci. 2022, 9, 2105803.

[76]

Wang, H. M.; Chen, S. S.; Fu, C. L.; Ding, Y.; Liu, G. R.; Cao, Y. L.; Chen, Z. X. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater. Lett. 2021, 3, 956–977.

[77]

Wu, F. X.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 2017, 10, 435–459.

[78]

Yu, S. H.; Feng, X. R.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 2018, 51, 273–281.

[79]

Wu, L.; Zheng, J.; Wang, L.; Xiong, X. H.; Shao, Y. Y.; Wang, G.; Wang, J. H.; Zhong, S. K.; Wu, M. H. PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 811–815.

[80]

Li, J. F.; Han, L.; Li, Y. Q.; Li, J. L.; Zhu, G.; Zhang, X. J.; Lu, T.; Pan, L. K. MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chem. Eng. J. 2020, 380, 122590.

[81]

Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851.

[82]

Li, J. B.; Ding, Z. B.; Li, J. L.; Wang, C. Y.; Pan, L. K.; Wang, G. X. Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage. Chem. Eng. J. 2021, 407, 127199.

[83]

Liu, T. T.; Zhang, X. K.; Xia, M. T.; Yu, H. X.; Peng, N.; Jiang, C.; Shui, M.; Xie, Y.; Yi, T. F.; Shu, J. Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy 2020, 67, 104295.

[84]

Yi, T. F.; Li, Y. M.; Li, X. Y.; Pan, J. J.; Zhang, Q.; Zhu, Y. R. Enhanced electrochemical property of FePO4-coated LiNi0.5Mn1.5O4 as cathode materials for Li-ion battery. Sci. Bull. 2017, 62, 1004–1010.

[85]

Li, J. F.; Han, L.; Zhang, X. L.; Sun, H. C.; Liu, X. J.; Lu, T.; Yao, Y. F.; Pan, L. K. Multi-role TiO2 layer coated carbon@few-layered MoS2 nanotubes for durable lithium storage. Chem. Eng. J. 2021, 406, 126873.

[86]

Xiong, D. B.; Shi, Y. M.; Yang, H. Y. Rational design of MXene-based films for energy storage: Progress, prospects. Mater. Today 2021, 46, 183–211.

[87]

Zhang, X. J.; Ouyang, W.; Zhu, G.; Lu, T.; Pan, L. K. Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability and long-life cycling performance. Carbon 2019, 143, 116–124.

[88]

Li, J. F.; Han, L.; Zhang, X. J.; Zhu, G.; Chen, T. Q.; Lu, T.; Pan, L. K. Sb2O5/Co-containing carbon polyhedra as anode material for high-performance lithium-ion batteries. Chem. Eng. J. 2019, 370, 800–809.

[89]

Li, L.; Zhao, R.; Pan, D.; Yi, S. H.; Gao, L. F.; He, G. J.; Zhao, H. L.; Yu, C. Y.; Bai, Y. Constructing tri-functional modification for spinel LiNi0.5Mn1. 5O4 via fast ion conductor. J. Power Sources 2020, 450, 227677.

[90]

Li, S. Q.; Wang, K.; Zhang, G. F.; Li, S. N.; Xu, Y. N.; Zhang, X. D.; Zhang, X.; Zheng, S. H.; Sun, X. Z.; Ma, Y. W. Fast charging anode materials for lithium-ion batteries: Current status and perspectives. Adv. Funct. Mater. 2022, 32, 2200796.

[91]

Li, C. L.; Yin, C. L.; Gu, L.; Dinnebier, R. E.; Mu, X. K.; van Aken, P. A.; Maier, J. An FeF3·0.5H2O polytype:A microporous framework compound with intersecting tunnels for Li and Na batteries. J. Am. Chem. Soc. 2013, 135, 11425–11428.

[92]

Martin, A.; Santiago, E. S.; Kemnitz, E.; Pinna, N. Reversible insertion in AFeF3 (A = K+, NH4+) cubic iron fluoride perovskites. ACS Appl. Mater. Interfaces 2019, 11, 33132–33139.

[93]

Martin, A.; Doublet, M. L.; Kemnitz, E.; Pinna, N. Reversible sodium and lithium insertion in iron fluoride perovskites. Adv. Funct. Mater. 2018, 28, 1802057.

[94]

Li, X.; Zhao, R. X.; Fu, Y. Z.; Manthiram, A. Nitrate additives for lithium batteries: Mechanisms, applications, and prospects. eScience 2021, 1, 108–123.

[95]

Xue, W. R.; Qin, T.; Li, Q.; Zan, M. W.; Yu, X. Q.; Li, H. Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes. Energy Storage Mater. 2022, 50, 598–605.

[96]

Ni, L.; Xu, G. J.; Li, C. C.; Cui, G. L. Electrolyte formulation strategies for potassium-based batteries. Exploration 2022, 2, 20210239.

[97]

Zhou, X. Y.; Sun, H. X.; Zhou, H. C.; Xu, Z. L.; Yang, J. Enhancing cycling performance of FeF3 cathode by introducing a lightweight high conductive adsorbable interlayer. J. Alloys Compd. 2017, 723, 317–326.

[98]

Hua, X.; Robert, R.; Du, L. S.; Wiaderek, K. M.; Leskes, M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery. J. Phys. Chem. C 2014, 118, 15169–15184.

[99]

Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R. G.; Wu, L. J. et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836.

[100]

Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G. G. Carbon metal fluoride nanocomposites: High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 2003, 150, A1318–A1327.

[101]

Badway, F.; Pereira, N.; Cosandey, F.; Amatucci, G. G. Carbon-metal fluoride nanocomposites: Structure and electrochemistry of FeF3: C. J. Electrochem. Soc. 2003, 150, A1209–A1218.

[102]

Kim, T.; Jae, W. J.; Kim, H.; Park, M.; Han, J. M.; Kim, J. A cathode material for lithium-ion batteries based on graphitized carbon-wrapped FeF3 nanoparticles prepared by facile polymerization. J. Mater. Chem. A 2016, 4, 14857–14864.

[103]

Yang, Z. H.; Pei, Y.; Wang, X. Y.; Liu, L.; Su, X. P. First principles study on the structural, magnetic and electronic properties of Co-doped FeF3. Comput. Theor. Chem. 2012, 980, 44–48.

[104]

Ji, E.; Huang, J.; Yu, Z. Y.; Hu, Q. X.; Liu, H. X.; Lai, C. T.; Yuan, Z. Z. Electrochemical characterization of CuF2/CNTs cathode materials prepared by a coprecipitation method. Funct. Mater. Lett. 2022, 15, 2251036.

[105]

Zheng, Y.; Zhang, P.; Wu, S. Q.; Wen, Y. H.; Zhu, Z. Z.; Yang, Y. First-principles studies on the structural and electronic properties of Li-ion battery cathode material CuF2. Solid State Commun. 2012, 152, 1703–1706.

[106]

Cheng, Q. X.; Chen, Y. Y.; Lin, X. M.; Liu, J. C.; Yuan, Z. Z.; Cai, Y. P. Hybrid cobalt(II) fluoride derived from a bimetallic zeolitic imidazolate framework as a high-performance cathode for lithium-ion batteries. J. Phys. Chem. C 2020, 124, 8624–8632.

[107]

Barreda-Argüeso, J. A.; López-Moreno, S.; Sanz-Ortiz, M. N.; Aguado, F.; Valiente, R.; González, J.; Rodríguez, F.; Romero, A. H.; Muñoz, A.; Nataf, L. et al. Pressure-induced phase-transition sequence in CoF2: An experimental and first-principles study on the crystal, vibrational, and electronic properties. Phys. Rev. B 2013, 88, 214108.

[108]

Jing, P.; Wang, Q.; Wang, B. Y.; Gao, X.; Zhang, Y.; Wu, H. Encapsulating yolk–shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage. Carbon 2020, 159, 366–377.

[109]

Zou, J.; Zhao, J.; Wang, B. J.; Chen, S. L.; Chen, P. Y.; Ran, Q. W.; Li, L.; Wang, X.; Yao, J. M.; Li, H. et al. Unraveling the reaction mechanism of FeS2 as a Li-ion battery cathode. ACS Appl. Mater. Interfaces 2020, 12, 44850–44857.

[110]

Sugiyama, J.; Mukai, K.; Ikedo, Y.; Nozaki, H.; Månsson, M.; Watanabe, I. Li diffusion in LixCoO2 probed by muon-spin spectroscopy. Phys. Rev. Lett. 2009, 103, 147601.

[111]

Ning, F. H.; Xu, B.; Shi, J.; Wu, M. S.; Hu, Y. Q.; Ouyang, C. Y. Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: A first-principles investigation. J. Phys. Chem. C 2016, 120, 18428–18434.

[112]

Yu, D. Y. W.; Fietzek, C.; Weydanz, W.; Donoue, K.; Inoue, T.; Kurokawa, H.; Fujitani, S. Study of LiFePO4 by cyclic voltammetry. J. Electrochem. Soc. 2007, 154, A253.

[113]

Lee, H.; Kim, S.; Parmar, N. S.; Song, J. H.; Chung, K. Y.; Kim, K. B.; Choi, J. W. Carbon-free Mn-doped LiFePO4 cathode for highly transparent thin-film batteries. J. Power Sources 2019, 434, 226713.

[114]

Huang, X.; Zhao, J. Q.; Zhu, W. C.; Hou, M. C.; Zhou, T.; Bu, L. M.; Gao, L. J.; Zhang, W. Three-dimensional Li-ion transportation in Li2MnO3-integrated LiNi0.8Co0.1Mn0.1O2. J. Energy Chem. 2021, 63, 376–384.

[115]

Xiong, W. T.; Hu, W.; Li, H. L. First-principles calculations of the atomic structure and electronic structure of F-doped Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium-ion batteries. J. Electron. Mater. 2022, 51, 3944–3949.

[116]

Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621–625.

[117]

Yan, D.; Huang, S. Z.; Von Lim, Y.; Fang, D. L.; Shang, Y.; Pam, M. E.; Yu, J. Z.; Xiong, D. B.; Li, X. L.; Zhang, J. et al. Stepwise intercalation-conversion-intercalation sodiation mechanism in CuInS2 prompting sodium storage performance. ACS Energy Lett. 2020, 5, 3725–3732.

[118]

Yan, D.; Li, K.; Yan, Y. P.; Huang, S. Z.; Von Lim, Y.; Shang, Y.; Fang, D. L.; Ang, L. K.; Yang, H. Y. Cubic spinel XIn2S4 (X = Fe, Co, Mn): A new type of anode material for superfast and ultrastable Na-ion storage. Adv. Energy Mater. 2021, 11, 2102137.

[119]

Yan, D.; Von Lim, Y.; Wang, G. Z.; Shang, Y.; Li, X. L.; Fang, D. L.; Pam, M. E.; Yang, S. A.; Wang, Y.; Shi, Y. M. et al. Unlocking rapid and robust sodium storage performance of zinc-based sulfide via indium incorporation. ACS Nano 2021, 15, 8507–8516.

[120]

Thieu, D. T.; Fawey, M. H.; Bhatia, H.; Diemant, T.; Chakravadhanula, V. S. K.; Behm, R. J.; Kübel, C.; Fichtner, M. CuF2 as reversible cathode for fluoride ion batteries. Adv. Funct. Mater. 2017, 27, 1701051.

[121]

Dai, Z. S.; Zhao, H. L.; Chen, W. X.; Zhang, Q.; Song, X. S.; He, G. J.; Zhao, Y.; Lu, X.; Bai, Y. In situ construction of gradient oxygen release buffer and interface cation self-accelerator stabilizing high-voltage Ni-rich cathode. Adv. Funct. Mater. 2022, 32, 2206428.

[122]

Dai, Z. S.; Wang, J. H.; Zhao, H. L.; Bai, Y. Surface coupling between mechanical and electric fields empowering Ni-rich cathodes with superior cyclabilities for lithium-ion batteries. Adv. Sci. 2022, 9, 2200622.

[123]

Gao, L. F.; Chen, S. H.; Zhang, G. W.; Dai, Z. S.; Yan, D.; Yang, H. Y.; Yu, C. Y.; Bai, Y. Improved thermal and structural stabilities of LiNi0.6Co0.2Mn0.2O2 cathode by La2Zr2O7 multifunctional modification. Appl. Phys. Lett. 2021, 119, 093902.

[124]

Gmitter, A. J.; Badway, F.; Rangan, S.; Bartynski, R. A.; Halajko, A.; Pereira, N.; Amatucci, G. G. Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites. J. Mater. Chem. 2010, 20, 4149–4161.

[125]

Zhang, S. Y.; Ci, L. J.; Mu, W. Hydrothermal synthesis of Ag2Cu(VO3)4/Ag nanowires: A new cathode material for lithium-ion batteries. Scr. Mater. 2022, 210, 114431.

[126]

Wygant, B. R.; Kolesnichenko, I. V.; Schorr, N. B.; Harrison, K. L.; Lambert, T. N. Multispecies lithiation/delithiation of amorphous FeSx/C cathode material for Li batteries. J. Phys. Chem. C 2022, 126, 9000–9008.

[127]

Wang, Y. J.; Zhang, M. Y.; Zhang, Y. X.; Wang, Y. F.; Liu, W. X.; Yang, C. J.; Kondratiev, V.; Wu, F. X. Enhancing electrochemical performance of CoF2-Li batteries via honeycombed nanocomposite cathode. Energy Fuels 2022, 36, 8439–8448.

[128]

Oh, J.; Lim, E.; Chun, J.; Jo, C. Nickel fluoride (NiF2)/porous carbon nanocomposite synthesized via ammonium fluoride (NH4F) treatment for lithium-ion battery cathode applications. J. Power Sources 2022, 521, 230935.

[129]

Liu, S. X.; Chen, J. Z.; Su, Y.; Zheng, C. Z.; Zhu, D. D.; Zhang, X. D.; Zhou, X.; Ouyang, R.; Huang, Q. W.; He, Y. F. et al. Exploiting the iron difluoride electrochemistry by constructing hierarchical electron pathways and cathode electrolyte interface. Small 2022, 18, 2202006.

[130]

Lee, Y.; Kang, J.; Ahn, J.; Ko, W.; Park, H.; Lee, S.; Lee, S.; Yoo, J. K.; Kim, J. A high-energy conversion-type cathode activated by amorpholization for Li rechargeable batteries. J. Mater. Chem. A 2022, 10, 20080–20089.

[131]

Hu, Z. Q.; Zhang, F. L.; Liang, H. Y.; Zhang, H.; Wang, H. Z.; Wang, T. S.; Liu, R. B.; Liu, J.; Li, Y. D.; Dong, X. T. et al. Mechanistic understanding of the charge storage processes in FeF2 aggregates assembled with cylindrical nanoparticles as a cathode material for lithium-ion batteries by in situ magnetometry. Carbon Energy 2022, 4, 1011–1020.

[132]

He, D. F.; Zhang, Y. L.; Cao, D.; Sun, M. F.; Xia, J. W.; Yang, Y.; Ding, Y. J.; Chen, H. Q. A flexible free-standing FeF3/reduced graphene oxide film as cathode for advanced lithium-ion battery. J. Alloys Compd. 2022, 909, 164702.

[133]

Eveillard, F.; Leroux, F.; Batisse, N.; Delbègue, D.; Guérin, K. Copper-iron ternary metal fluorides from multi-metallic template fluorination and their first use as cathode in solid state Li-batteries. J. Solid State Chem. 2022, 310, 123031.

[134]

Dai, Y. M.; Chen, Q. J.; Hu, C. C.; Huang, Y. Y.; Wu, W. Y.; Yu, M. L.; Sun, D.; Luo, W. Copper fluoride as a low-cost sodium-ion battery cathode with high capacity. Chin. Chem. Lett. 2022, 33, 1435–1438.

[135]

Cardenas, J. A.; Bullivant, J. P.; Kolesnichenko, I. V.; Roach, D. J.; Gallegos, M. A.; Coker, E. N.; Lambert, T. N.; Allcorn, E.; Talin, A. A.; Cook, A. W. et al. 3D printing of ridged FeS2 cathodes for improved rate capability and custom-form lithium batteries. ACS Appl. Mater. Interfaces 2022, 14, 45342–45351.

[136]

Butova, V. V.; Aboraia, A. M.; Shapovalov, V. V.; Dzhangiryan, N. A.; Papkovskaya, E. D.; Ilin, O. I.; Kubrin, S. P.; Guda, A. A.; Soldatov, A. V. Iron(II) fluoride cathode material derived from MIL-88A. J. Alloys Compd. 2022, 916, 165438.

[137]

Zhang, Y.; Huang, L. W.; Zhou, X. R.; Luo, Y. T.; Chen, Q. H.; Chen, Y. G. The performance and mechanism of copper-cobalt sulfide cathode for hybrid Mg2+/Li+ batteries. J. Alloys Compd. 2021, 881, 160536.

[138]

Yang, Y.; Gao, L.; Shen, L. M.; Bao, N. Z. Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode. J. Alloys Compd. 2021, 873, 159799.

[139]

Schorr, B. N. B.; Kolesnichenko, I. V.; Merrill, L. C.; Wygant, B. R.; Harrison, K. L.; Lambert, T. N. Stable cycling of lithium batteries utilizing iron disulfide nanoparticles. ACS Appl. Nano Mater. 2021, 4, 11636–11643.

[140]

Li, S. Y.; Lee, J. H.; Hwang, S. M.; Yoo, J. B.; Kim, H.; Kim, Y. J. Natural activation of CuO to CuCl2 as a cathode material for dual-ion lithium metal batteries. Energy Storage Mater. 2021, 41, 466–474.

[141]

Li, L.; Luo, C.; Zou, J.; Ran, Q. W.; Chen, P. Y.; Wang, X.; Zhao, Y. L.; Wang, L. P.; Zheng, J. Y.; Niu, X. B. Prelithiated FeS2 cathode with alleviated volume expansion toward improved cycling performance. Solid State Ionics 2021, 368, 115696.

[142]

Wang, J. J.; Du, C. F.; Xue, Y. Q.; Tan, X. Y.; Kang, J. Z.; Gao, Y.; Yu, H.; Yan, Q. Y. MXenes as a versatile platform for reactive surface modification and superior sodium-ion storages. Exploration 2021, 1, 20210024.

[143]

Dong, H. H.; Gao, H. G.; Geng, J. R.; Hou, X. S.; Gao, S. N.; Wang, S. W.; Chou, S. L. Quinone-based conducting three-dimensional metal-organic framework as a cathode material for lithium-ion batteries. J. Phys. Chem. C 2021, 125, 20814–20820.

[144]

Xi, Y. L.; Ye, X. M.; Duan, S. R.; Li, T.; Zhang, J.; Jia, L. J.; Yang, J.; Wang, J.; Liu, H. T.; Xiao, Q. B. Iron vacancies and surface modulation of iron disulfide nanoflowers as a high power/energy density cathode for ultralong-life stable Li storage. J. Mater. Chem. A 2020, 8, 14769–14777.

[145]

Wang, Y. H.; Li, X. T.; Wang, W. P.; Yan, H. J.; Xin, S.; Guo, Y. G. Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Sci. China Chem. 2020, 63, 1402–1415.

[146]

Maulana, A. Y.; Futalan, C. M.; Kim, J. MOF-derived FeF2 nanoparticles@graphitic carbon undergoing in situ phase transformation to FeF3 as a superior sodium-ion cathode material. J. Alloys Compd. 2020, 840, 155719.

[147]

Li, J.; Xu, L.; Wei, K. Y.; Ma, S. P.; Liu, X. J.; Zhao, Y.; Cui, Y. H. In situ forming of ternary metal fluoride thin films with excellent Li storage performance by pulsed laser deposition. Ionics 2020, 26, 3367–3375.

[148]

Chang, Q.; Luo, Z. S. J.; Fu, L. C.; Zhu, J. J.; Yang, W. L.; Li, D. Y.; Zhou, L. P. A new cathode material of NiF2 for thermal batteries with high specific power. Electrochim. Acta 2020, 361, 137051.

[149]

Zhou, H. C.; Sun, H. X.; Wang, T.; Gao, Y. N.; Ding, J.; Xu, Z. L.; Tang, J. J.; Jia, M.; Yang, J.; Zhu, J. Low temperature nanotailoring of hydrated compound by alcohols: FeF33H2O as an example. preparation of nanosized FeF3. 0.33H2O cathode material for Li-ion batteries. Inorg. Chem. 2019, 58, 6765–6771.

[150]

Zhai, J. R.; Lei, Z. Y.; Sun, K. N. 3D starfish-like FeOF on graphene sheets: Engineered synthesis and lithium storage performance. Chem.—Eur. J. 2019, 25, 7733–7739.

[151]

Yang, Z. G.; Chen, T.; Wu, C. J.; Qu, J.; Wu, Z. G.; Guo, X. D.; Zhong, B. H.; Liu, H. K.; Dou, S. X. Interpreting abnormal charge–discharge plateau migration in CuxS during long-term cycling. ACS Appl. Mater. Interfaces 2019, 11, 3961–3970.

[152]

Xie, J.; Carrasco, J.; Li, R. R.; Shen, H. J.; Chen, Q.; Yang, M. H. Novel 3D flower-like micro/nano-structure FeS/N-doped-C composites as advanced cathodes with high lithium storage performances. J. Power Sources 2019, 431, 226–231.

[153]

Villa, C.; Kim, S.; Lu, Y. X.; Dravid, V. P.; Wu, J. S. Cu-substituted NiF2 as a cathode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 647–654.

[154]

Tawa, S.; Sato, Y.; Orikasa, Y.; Matsumoto, K.; Hagiwara, R. Lithium fluoride/iron difluoride composite prepared by a fluorolytic sol-gel method: Its electrochemical behavior and charge–discharge mechanism as a cathode material for lithium secondary batteries. J. Power Sources 2019, 412, 180–188.

[155]

Singh, R.; Witte, R.; Mu, X. K.; Brezesinski, T.; Hahn, H.; Kruk, R.; Breitung, B. Reversible control of magnetism: On the conversion of hydrated FeF3 with Li to Fe and LiF. J. Mater. Chem. A 2019, 7, 24005–24011.

[156]

Murugesan, V.; Cho, J. S.; Govind, N.; Andersen, A.; Olszta, M. J.; Han, K. S.; Li, G. S.; Lee, H.; Reed, D. M.; Sprenkle, V. L. et al. Lithium insertion mechanism in iron fluoride nanoparticles prepared by catalytic decomposition of fluoropolymer. ACS Appl. Energy Mater. 2019, 2, 1832–1843.

[157]

Huang, Q.; Pollard, T. P.; Ren, X. L.; Kim, D.; Magasinski, A.; Borodin, O.; Yushin, G. Fading mechanisms and voltage hysteresis in FeF2-NiF2 solid solution cathodes for lithium and lithium-ion batteries. Small 2019, 15, 1804670.

[158]

Fu, M. S.; Yao, Z. P.; Ma, X.; Dong, H.; Sun, K.; Hwang, S.; Hu, E. Y.; Gan, H.; Yao, Y.; Stach, E. A. et al. Expanded lithiation of titanium disulfide: Reaction kinetics of multi-step conversion reaction. Nano Energy 2019, 63, 103882.

[159]

Bensalah, N.; Mustafa, N. In situ generated MWCNT-FeF3·0.33 H2O nanocomposites toward stable performance cathode material for lithium ion batteries. Emergent Mater. 2019, 2, 59–66.

[160]

Yang, Z. H.; Zhao, S.; Pan, Y. J.; Wang, X. Y.; Liu, H. H.; Wang, Q.; Zhang, Z. J.; Deng, B.; Guo, C. S.; Shi, X. Q. Atomistic insights into FeF3 nanosheet: An ultrahigh-rate and long-life cathode material for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 3142–3151.

[161]

Ma, W. Q.; Liu, X. Z.; Lei, X. F.; Yuan, Z. H.; Ding, Y. Micro/nano-structured FeS2 for high energy efficiency rechargeable Li-FeS2 battery. Chem. Eng. J. 2018, 334, 725–731.

[162]

Li, T.; Qin, A. Q.; Wang, H. T.; Wu, M. Y.; Zhang, Y. Y.; Zhang, Y. J.; Zhang, D. H.; Xu, F. A high-performance hybrid Mg2+/Li+ battery based on hierarchical copper sulfide microflowers conversion cathode. Electrochim. Acta 2018, 263, 168–175.

[163]

Li, J.; Fu, L. C.; Xu, Z. W.; Zhu, J. J.; Yang, W. L.; Li, D. Y.; Zhou, L. P. Electrochemical properties of carbon-wrapped FeF3 nanocomposite as cathode material for lithium ion battery. Electrochim. Acta 2018, 281, 88–98.

[164]

Li, C. L.; Chen, K. Y.; Zhou, X. J.; Maier, J. Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Comput. Mater. 2018, 4, 22.

[165]

Shi, Y.; Yin, P.; Li, J.; Xu, X.; Jiang, Q.; Li, J.; Sari, H.; Wang, J.; Li, W.; Hu, J.; Lin, Q.; Liu, J.; Yang, J.; Li, X. Ultra-high rate capability of in-situ anchoring FeF3 cathode onto double-enhanced conductive Fe/graphitic carbon for high energy density lithium-ion batteries. Nano Energy 2023, 108, 108181.

[166]

Xin, S.; Chang, Z. W.; Zhang, X. B.; Guo, Y. G. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl. Sci. Rev. 2017, 4, 54–70.

[167]

Wang, X. S.; Du, K. Z.; Wang, C.; Ma, L. X.; Zhao, B. L.; Yang, J. F.; Li, M. X.; Zhang, X. X.; Xue, M. Q.; Chen, J. T. Unique reversible conversion-type mechanism enhanced cathode performance in amorphous molybdenum polysulfide. ACS Appl. Mater. Interfaces 2017, 9, 38606–38611.

[168]

Owen, N.; Zhang, Q. Investigations of aluminum fluoride as a new cathode material for lithium-ion batteries. J. Appl. Electrochem. 2017, 47, 417–431.

[169]

Lin, C. F.; Fan, X. L.; Pearse, A.; Liou, S. C.; Gregorczyk, K.; Leskes, M.; Wang, C. S.; Lee, S. B.; Rubloff, G. W.; Noked, M. Highly reversible conversion-type FeOF composite electrode with extended lithium insertion by atomic layer deposition LiPON protection. Chem. Mater. 2017, 29, 8780–8791.

[170]

Li, Y.; Yao, F. N.; Cao, Y.; Yang, H. Y.; Feng, Y. Y.; Feng, W. The mediated synthesis of FeF3 nanocrystals through (NH4)3FeF6 precursors as the cathode material for high power lithium ion batteries. Electrochim. Acta 2017, 253, 545–553.

[171]

Guntlin, C. P.; Zünd, T.; Kravchyk, K. V.; Wörle, M.; Bodnarchuk, M. I.; Kovalenko, M. V. Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. J. Mater. Chem. A 2017, 5, 7383–7393.

[172]

Butala, M. M.; Mayo, M.; Doan-Nguyen, V. V. T.; Lumley, M. A.; Göbel, C.; Wiaderek, K. M.; Borkiewicz, O. J.; Chapman, K. W.; Chupas, P. J.; Balasubramanian, M. et al. Local structure evolution and modes of charge storage in secondary Li-FeS2 cells. Chem. Mater. 2017, 29, 3070–3082.

[173]

Son, S. B.; Yersak, T. A.; Piper, D. M.; Kim, S. C.; Kang, C. S.; Cho, J. S.; Suh, S. S.; Kim, Y. U.; Oh, K. H.; Lee, S. H. A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv. Energy Mater. 2014, 4, 1300961.

[174]

Ma, D. L.; Cao, Z. Y.; Wang, H. G.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy Environ. Sci. 2012, 5, 8538–8542.

[175]

Kitchaev, D. A.; Peng, H. W.; Liu, Y.; Sun, J. W.; Perdew, J. P.; Ceder, G. Energetics of MnO2 polymorphs in density functional theory. Phys. Rev. B 2016, 93, 045132.

[176]

Song, Y. N.; Yang, S. F.; Zavalij, P. Y.; Whittingham, M. S. Temperature-dependent properties of FePO4 cathode materials. Mater. Res. Bull. 2002, 37, 1249–1257.

[177]

Zhang, Y.; Meng, J. W.; Chen, K. Y.; Wu, H.; Hu, J. L.; Li, C. L. Garnet-based solid-state lithium fluoride conversion batteries benefiting from eutectic interlayer of superior wettability. ACS Energy Lett. 2020, 5, 1167–1176.

[178]

Shao, B. W.; Tan, S.; Huang, Y. L.; Zhang, L. F.; Shi, J.; Yang, X. Q.; Hu, E. Y.; Han, F. D. Enabling conversion-type iron fluoride cathode by halide-based solid electrolyte. Adv. Funct. Mater. 2022, 32, 2206845.

[179]

Inoishi, A.; Setoguchi, N.; Hori, H.; Kobayashi, E.; Sakamoto, R.; Sakaebe, H.; Okada, S. FeF3 as reversible cathode for all-solid-state fluoride batteries. Adv. Energy Sustainability Res. 2022, 3, 2200131.

[180]

Ma, Y.; Garofalini, S. H. Atomistic insights into the conversion reaction in iron fluoride: A dynamically adaptive force field approach. J. Am. Chem. Soc. 2012, 134, 8205–8211.

Publication history
Copyright
Acknowledgements

Publication history

Received: 29 October 2022
Revised: 12 December 2022
Accepted: 19 December 2022
Published: 10 February 2023
Issue date: June 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 51672069 and 52072112), Program for Innovative Research Team in Science and Technology in the University of Henan Province (No. 20IRTSTHN012), Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2021003), Science and Technology Development Project of Henan Province (No. 202102210105), and Zhongyuan Thousand Talents Program of Henan Province (No. ZYQR201912155).

Return