AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring

Wei Fan1,§( )Cong Zhang1,§Yang Liu1Shujuan Wang3Kai Dong4Yi Li5Fan Wu1Junhao Liang1Chunlan Wang1Yingying Zhang2( )
School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 100083, China
Department of Materials, University of Manchester, Manchester, M13 9PL, UK

§ Wei Fan and Cong Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

We fabricated an all-nanofiber piezoelectric nanogenerator (ANF-PENG) with air permeability, super-hydrophobicity, and antibacterial properties.

Abstract

Piezoelectric nanogenerators (PENGs) are promising for harvesting renewable and abundant mechanical energy with high efficiency. Up to now, published research studies have mainly focused on increasing the sensitivity and output of PENGs. The technical challenges in relation to practicability, comfort, and antibacterial performance, which are critically important for wearable applications, have not been well addressed. To overcome the limitations, we developed an all-nanofiber PENG (ANF-PENG) with a sandwich structure, in which the middle poly(vinylidene fluoride-co-hexafluoropropylene (P(VDF-HFP))/ZnO electrospun nanofibers serve as the piezoelectric layer, and the above and below electrostatic direct-writing P(VDF-HFP)/ZnO nanofiber membranes with a 110 nm Ag layer on one side that was plated by vacuum coating technique serve as the electrode layer. As the ANF-PENG only has 91 μm thick and does not need further encapsulating, it has a high air permeability of 24.97 mm/s. ZnO nanoparticles in ANF-PENG not only improve the piezoelectric output, but also have antibacterial function (over 98%). The multi-functional ANF-PENG demonstrates good sensitivity to human motion and can harvest mechanical energy, indicating great potential applications in flexible self-powered electronic wearables and body health monitoring.

Electronic Supplementary Material

Video
12274_2023_5413_MOESM2_ESM.mp4
Download File(s)
12274_2023_5413_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Dong, K.; Peng, X.; Wang, Z. L. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 2020, 32, 190254.

[2]

Cai, J. Y.; Du, M. J.; Li, Z. L. Flexible temperature sensors constructed with fiber materials. Adv. Mater. Technol. 2022, 7, 2101182.

[3]

Wang, Q.; Yang, Y. Q.; Chen, W. C.; Zhang, C.; Rong, K.; Gao, X. Z.; Fan, W. Reliable coaxial wet spinning strategy to fabricate flexible MnO2-based fiber supercapacitors. J. Alloys Compd. 2023, 935, 168110.

[4]

Zhu, M. M.; Yu, J. Y.; Li, Z. L.; Ding, B. Self-healing fibrous membranes. Angew. Chem., Int. Ed. 2022, 61, e202208949.

[5]

Dong, K.; Peng, X.; An, J.; Wang, A. C.; Luo, J. J.; Sun, B. Z.; Wang, J.; Wang, Z. L. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 2020, 11, 2868.

[6]

Dong, K.; Peng, X.; Cheng, R. W.; Wang, Z. L. Smart textile triboelectric nanogenerators: Prospective strategies for improving electricity output performance. Nanoenergy Adv. 2022, 2, 133–164.

[7]

Liao, Q. L.; Zhang, Z.; Zhang, X. H.; Mohr, M.; Zhang, Y.; Fecht, H. J. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 2014, 7, 917–928.

[8]

Chen, W. C.; Fan, W.; Wang, Q.; Yu, X. C.; Luo, Y.; Wang, W. T.; Lei, R. X.; Li, Y. A Nano-micro structure engendered abrasion resistant, superhydrophobic, wearable triboelectric yarn for self-powered sensing. Nano Energy 2022, 103, 107769.

[9]

Xue, L. L.; Fan, W.; Yu, Y.; Dong, K.; Liu, C. K.; Sun, Y. L.; Zhang, C.; Chen, W. C.; Lei, R. X.; Rong, K. et al. A novel strategy to fabricate core–sheath structure piezoelectric yarns for wearable energy harvesters. Adv. Fiber Mater. 2021, 3, 239–250.

[10]

Ahn, S.; Cho, Y.; Park, S.; Kim, J.; Sun, J. Z.; Ahn, D.; Lee, M.; Kim, D.; Kim, T.; Shin, H. et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy 2020, 74, 104932.

[11]

Zhang, C.; Fan, W.; Wang, S. J.; Wang, Q.; Zhang, Y. F.; Dong, K. Recent progress of wearable piezoelectric nanogenerators. ACS Appl. Electron. Mater. 2021, 3, 2449–2467.

[12]

Tan, Y. S.; Yang, K.; Wang, B.; Li, H.; Wang, L.; Wang, C. X. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res. 2021, 14, 3969–3976.

[13]

Dai, Z.; Wang, N.; Yu, Y.; Lu, Y.; Jiang, L. L.; Zhang, D. A.; Wang, X. X.; Yan, X.; Long, Y. Z. One-step preparation of a core-spun Cu/P(VDF-TrFE) nanofibrous yarn for wearable smart textile to monitor human movement. ACS Appl. Mater. Interfaces 2021, 13, 44234–44242.

[14]

Yuan, L. J.; Fan, W.; Yang, X.; Ge, S. B.; Xia, C. L.; Foong, S. Y.; Liew, R. K.; Wang, S. J.; Van Le, Q.; Lam, S. S. Piezoelectric PAN/BaTiO3 nanofiber membranes sensor for structural health monitoring of real-time damage detection in composite. Compos. Commun. 2021, 25, 100680.

[15]

Kang, J. Y.; Liu, T.; Lu, Y.; Lu, L. L.; Dong, K.; Wang, S. J.; Li, B.; Yao, Y.; Bai, Y.; Fan, W. Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos. Part B: Eng. 2022, 245, 110229.

[16]

Jiang, Y.; Dong, K.; An, J.; Liang, F.; Yi, J.; Peng, X.; Ning, C.; Ye, C. Y.; Wang, Z. L. UV-protective, self-cleaning, and antibacterial nanofiber-based triboelectric nanogenerators for self-powered human motion monitoring. ACS Appl. Mater. Interfaces 2021, 13, 11205–11214.

[17]

Zhu, M. M.; Li, J. L.; Yu, J. Y.; Li, Z. L.; Ding, B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew. Chem., Int. Ed. 2022, 61, e202200226.

[18]

Sun, Y.; Chen, H. J.; Yin, H.; Sun, B. Z.; Gu, B. H.; Zhang, W. A flexible, high-strength, conductive shape memory composite fabric based on continuous carbon fiber/polyurethane yarn. Smart Mater. Struct. 2020, 29, 085044.

[19]

Mao, L.; Hu, S. M.; Gao, Y. H.; Wang, L.; Zhao, W. W.; Fu, L. N.; Cheng, H. Y.; Xia, L.; Xie, S. X.; Ye, W. L. et al. Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthc. Mater. 2020, 9, 2000872.

[20]

Cai, S. Y.; Xu, C. S.; Jiang, D. F.; Yuan, M. L.; Zhang, Q. W.; Li, Z. L.; Wang, Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy 2022, 93, 106904.

[21]

Li, B. Z.; Zhang, F. F.; Guan, S. A.; Zheng, J. M.; Xu, C. Y. Wearable piezoelectric device assembled by one-step continuous electrospinning. J. Mater. Chem. C 2016, 4, 6988–6995.

[22]

Bi, P.; Liu, X. W.; Yang, Y.; Wang, Z. Y.; Shi, J.; Liu, G. M.; Kong, F. F.; Zhu, B. P.; Xiong, R. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications. Adv. Mater. Technol. 2019, 4, 1900426.

[23]

Ju, B. J.; Oh, J. H.; Yun, C. S.; Park, C. H. Development of a superhydrophobic electrospun poly(vinylidene fluoride) web via plasma etching and water immersion for energy harvesting applications. RSC Adv. 2018, 8, 28825–28835.

[24]

Dai, Z. Y.; Chen, G.; Ding, S.; Lin, J.; Li, S. B.; Xu, Y.; Zhou, B. P. Facile formation of hierarchical textures for flexible, translucent, and durable superhydrophobic film. Adv. Funct. Mater. 2021, 31, 2008574.

[25]

Zhao, Y. Z.; Yuan, W. F.; Zhao, C. Y.; Gu, B.; Hu, N. Piezoelectricity of nano-SiO2/PVDF composite film. Mater. Res. Express 2018, 5, 105506.

[26]

Wang, X. Z.; Yang, B.; Liu, J. Q.; Yang, C. S. A transparent and biocompatible single-friction-surface triboelectric and piezoelectric generator and body movement sensor. J. Mater. Chem. A 2017, 5, 1176–1183.

[27]

Parangusan, H.; Ponnamma, D.; Al-Maadeed, M. A. A. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci. Rep. 2018, 8, 754.

[28]

Dong, Y. L.; Thomas, N. L.; Lu, X. H. Electrospun dual-layer mats with covalently bonded ZnO nanoparticles for moisture wicking and antibacterial textiles. Mater. Des. 2017, 134, 54–63.

[29]

Jesionek, M.; Toroń, B.; Szperlich, P.; Biniaś, W.; Biniaś, D.; Rabiej, S.; Starczewska, A.; Nowak, M.; Kępińska, M.; Dec, J. Fabrication of a new PVDF/SbSI nanowire composite for smart wearable textile. Polymer 2019, 180, 121729.

[30]

Mondal, S.; Paul, T.; Maiti, S.; Das, B. K.; Chattopadhyay, K. K. Human motion interactive mechanical energy harvester based on all inorganic perovskite-PVDF. Nano Energy 2020, 74, 104870.

[31]

Li, G. Y.; Li, J.; Li, Z. J.; Zhang, Y. P.; Zhang, X.; Wang, Z. J.; Han, W. P.; Sun, B.; Long, Y. Z.; Zhang, H. D. Hierarchical PVDF-HFP/ZnO composite nanofiber-based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv. Compos. Hybrid Mater. 2022, 5, 766–775.

[32]

Wen, F.; Sun, Z. D.; He, T. Y. Y.; Shi, Q. F.; Zhu, M. L.; Zhang, Z. X.; Li, L. H.; Zhang, T.; Lee, C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 2020, 7, 2000261.

[33]

Kim, H. S.; Park, C. H. Effect of biaxial tensile extension on superhydrophobicity of rayon knitted fabrics. RSC Adv. 2016, 6, 48155–48164.

[34]

Fan, W.; Zhang, G.; Zhang, X. L.; Dong, K.; Liang, X. P.; Chen, W. C.; Yu, L. J.; Zhang, Y. Y. Superior unidirectional water transport and mechanically stable 3D orthogonal woven fabric for human body moisture and thermal management. Small 2022, 18, 2107150.

[35]

Zou, L. H.; Lan, C. T.; Li, X. P.; Zhang, S. L.; Qiu, Y. P.; Ma, Y. Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding. Fibers Polym. 2015, 16, 2158–2164.

[36]

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

[37]

Jiang, S. J.; Lin, K. L.; Cai, M. ZnO Nanomaterials: Current advancements in antibacterial mechanisms and applications. Front. Chem. 2020, 8, 580.

[38]

Shi, L. E.; Li, Z. H.; Zheng, W.; Zhao, Y. F.; Jin, Y. F.; Tang, Z. X. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: A review. Food Addit. Contam. Part A 2014, 31, 173–186.

[39]

Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Sci. Rep. 2020, 10, 13478.

Nano Research
Pages 11612-11620
Cite this article:
Fan W, Zhang C, Liu Y, et al. An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Research, 2023, 16(9): 11612-11620. https://doi.org/10.1007/s12274-023-5413-8
Topics:
Part of a topical collection:

9192

Views

35

Crossref

44

Web of Science

44

Scopus

1

CSCD

Altmetrics

Received: 30 October 2022
Revised: 30 November 2022
Accepted: 14 December 2022
Published: 12 January 2023
© Tsinghua University Press 2023
Return