Journal Home > Volume 16 , Issue 5

SrZrS3 is a promising chalcogenide perovskite with unique advantages including high abundance of consisting elements, high chemical stability, strong light absorption above its direct band gap, and excellent carrier transport ability. While unfortunately, due to the lack of breakthroughs in its thin film synthesis technique, its optoelectronic properties are not fully investigated, not to mention the device applications. In this work, large-area and uniform SrZrS3 thin film (5 cm × 5 cm) was prepared by facile sputtering method, followed by a post-annealing treatment at a high temperature of 1000 °C for 2–12 h under CS2 atmosphere. All SrZrS3 samples prepared adopt distorted orthorhombic structure with pnma space group and have high crystallinity. In addition, the band gap of SrZrS3 thin film is measured to be 2.29 eV, higher than that of the powder form (2.06 eV). Importantly, the light absorption coefficient of SrZrS3 thin film reaches over 105 cm−1, and the carrier mobility is as high as 106 cm2/(V∙s). The above advantages allow us to use the SrZrS3 thin film as photoactive layer for photodetector applications. Finally, a symmetrically structured photoconductive detector was fabricated, performing a high responsivity of 8 A/W (405 nm light excitation). These inspiring results promise the glorious application potential of SrZrS3 thin film in photodetectors, solar cells, and other optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Parametric study on controllable growth of SrZrS3 thin films with good conductivity for photodetectors

Show Author's information Yurun Liang§Yuewen Zhang§Jie XuJingli MaHuifang JiangXin LiBaolin ZhangXu ChenYongtao TianYanbing Han( )Zhifeng Shi( )
Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China

§ Yurun Liang and Yuewen Zhang contributed equally to this work.

Abstract

SrZrS3 is a promising chalcogenide perovskite with unique advantages including high abundance of consisting elements, high chemical stability, strong light absorption above its direct band gap, and excellent carrier transport ability. While unfortunately, due to the lack of breakthroughs in its thin film synthesis technique, its optoelectronic properties are not fully investigated, not to mention the device applications. In this work, large-area and uniform SrZrS3 thin film (5 cm × 5 cm) was prepared by facile sputtering method, followed by a post-annealing treatment at a high temperature of 1000 °C for 2–12 h under CS2 atmosphere. All SrZrS3 samples prepared adopt distorted orthorhombic structure with pnma space group and have high crystallinity. In addition, the band gap of SrZrS3 thin film is measured to be 2.29 eV, higher than that of the powder form (2.06 eV). Importantly, the light absorption coefficient of SrZrS3 thin film reaches over 105 cm−1, and the carrier mobility is as high as 106 cm2/(V∙s). The above advantages allow us to use the SrZrS3 thin film as photoactive layer for photodetector applications. Finally, a symmetrically structured photoconductive detector was fabricated, performing a high responsivity of 8 A/W (405 nm light excitation). These inspiring results promise the glorious application potential of SrZrS3 thin film in photodetectors, solar cells, and other optoelectronic devices.

Keywords: thin film, photodetector, chalcogenide perovskite, SrZrS3, sputter

References(30)

[1]

Zhang, J. S.; Shum, P. P.; Su, L. A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications. Nano Res. 2022, 15, 7402–7431.

[2]

Gu, Z. K.; Wang, Y.; Wang, S. H.; Zhang, T.; Zhao, R. D.; Hu, X. T.; Huang, Z. D.; Su, M.; Xu, Q.; Li, L. H. et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Res. 2022, 15, 1547–1553.

[3]

Li, L. Y.; Liu, J. X.; Zeng, M. Q.; Fu, L. Space-confined growth of metal halide perovskite crystal films. Nano Res. 2021, 14, 1609–1624.

[4]

Wang, H. P.; Li, S. Y.; Liu, X. Y.; Shi, Z. F.; Fang, X. S.; He, J. H. Low-dimensional metal halide perovskite photodetectors. Adv. Mater. 2021, 33, 2003309.

[5]

Sopiha, K. V.; Comparotto, C.; Márquez, J. A.; Scragg, J. J. S. Chalcogenide perovskites: Tantalizing prospects, challenging materials. Adv. Opt. Mater. 2022, 10, 2101704.

[6]

Swarnkar, A.; Mir, W. J.; Chakraborty, R.; Jagadeeswararao, M.; Sheikh, T.; Nag, A. Are chalcogenide perovskites an emerging class of semiconductors for optoelectronic properties and solar cell? Chem. Mater. 2019, 31, 565–575.

[7]

Buffiere, M.; Dhawale, D. S.; El-Mellouhi, F. Chalcogenide materials and derivatives for photovoltaic applications. Energy Technol. 2019, 7, 1900819.

[8]

Glück, N.; Bein, T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy Environ. Sci. 2020, 13, 4691–4716.

[9]

Perera, S.; Hui, H. L.; Zhao, C.; Xue, H. T.; Sun, F.; Deng, C. H.; Gross, N.; Milleville, C.; Xu, X. H.; Watson, D. F. et al. Chalcogenide perovskites—an emerging class of ionic semiconductors. Nano Energy 2016, 22, 129–135.

[10]

Sadeghi, I.; Ye, K.; Xu, M.; Li, Y. F.; LeBeau, J. M.; Jaramillo, R. Making BaZrS3 chalcogenide perovskite thin films by molecular beam epitaxy. Adv. Funct. Mater. 2021, 31, 2105563.

[11]

Yu, Z. H.; Wei, X. C.; Zheng, Y. X.; Hui, H. L.; Bian, M. Y.; Dhole, S.; Seo, J. H.; Sun, Y. Y.; Jia, Q. X.; Zhang, S. B. et al. Chalcogenide perovskite BaZrS3 thin-film electronic and optoelectronic devices by low temperature processing. Nano Energy 2021, 85, 105959.

[12]

Ravi, V. K.; Yu, S. H.; Rajput, P. K.; Nayak, C.; Bhattacharyya, D.; Chung, D. S.; Nag, A. Colloidal BaZrS3 chalcogenide perovskite nanocrystals for thin film device fabrication. Nanoscale 2021, 13, 1616–1623.

[13]

Niu, S. Y.; Huyan, H. X.; Liu, Y.; Yeung, M.; Ye, K.; Blankemeier, L.; Orvis, T.; Sarkar, D.; Singh, D. J.; Kapadia, R. et al. Bandgap control via structural and chemical tuning of transition metal perovskite chalcogenides. Adv. Mater. 2017, 29, 1604733.

[14]

Eya, H. I.; Ntsoenzok, E.; Dzade, N. Y. First-principles investigation of the structural, elastic, electronic, and optical properties of α- and β-SrZrS3: Implications for photovoltaic applications. Materials 2020, 13, 978.

[15]

Clearfield, A. The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides. Acta Cryst. 1963, 16, 135–142.

[16]

Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477–485.

[17]

Lee, C. S.; Kleinke, K. M.; Kleinke, H. Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 2005, 7, 1049–1054.

[18]

Sun, Y. Y.; Agiorgousis, M. L.; Zhang, P. H.; Zhang, S. B. Chalcogenide perovskites for photovoltaics. Nano Lett. 2015, 15, 581–585.

[19]

Wang, A.; Kingsbury, R.; McDermott, M.; Horton, M.; Jain, A.; Ong, S. P.; Dwaraknath, S.; Persson, K. A. A framework for quantifying uncertainty in DFT energy corrections. Sci. Rep. 2021, 11, 15496.

[20]
Haynes, W. M. CRC Handbook of Chemistry and Physics; 92nd ed. CRC Press: Boca Raton, 2017.
[21]

Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349–354.

[22]

Hui, H. L.; Yu, Z. H.; Yang, S.; Zeng, H. SrZrS3 thin films grown on different single crystal substrates by PLD. In Proceedings of APS March Meeting 2022, Chicago, USA,2022.

[23]

Shaili, H.; Beraich, M.; El Hat, A.; Ouafi, M.; Salmani, E. M.; Essajai, R.; Battal, W.; Rouchdi, M.; Taibi, M.; Hassanain, N. et al. Synthesis of the Sn-based CaSnS3 chalcogenide perovskite thin film as a highly stable photoabsorber for optoelectronic applications. J. Alloys Compd. 2021, 851, 156790.

[24]

Gupta, T.; Ghoshal, D.; Yoshimura, A.; Basu, S.; Chow, P. K.; Lakhnot, A. S.; Pandey, J.; Warrender, J. M.; Efstathiadis, H.; Soni, A. et al. An environmentally stable and lead-free chalcogenide perovskite. Adv. Funct. Mater. 2020, 30, 2001387.

[25]

Yang, R. Q.; Jess, A. D.; Fai, C.; Hages, C. J. Low-temperature, solution-based synthesis of luminescent chalcogenide perovskite BaZrS3 nanoparticles. J. Am. Chem. Soc. 2022, 144, 15928–15931.

[26]

Márquez, J. A.; Rusu, M.; Hempel, H.; Ahmet, I. Y.; Kölbach, M.; Simsek, I.; Choubrac, L.; Gurieva, G.; Gunder, R.; Schorr, S. et al. BaZrS3 chalcogenide perovskite thin films by H2S sulfurization of oxide precursors. J. Phys. Chem. Lett. 2021, 12, 2148–2153.

[27]

Nishigaki, Y.; Nagai, T.; Nishiwaki, M.; Aizawa, T.; Kozawa, M.; Hanzawa, K.; Kato, Y.; Sai, H.; Hiramatsu, H.; Hosono, H. et al. Extraordinary strong band-edge absorption in distorted chalcogenide perovskites. Solar RRL 2020, 4, 1900555.

[28]

Wei, X. C.; Hui, H. L.; Zhao, C.; Deng, C. H.; Han, M. J.; Yu, Z. H.; Sheng, A.; Roy, P.; Chen, A. P.; Lin, J. H. et al. Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 2020, 68, 104317.

[29]

Kumar, M.; Singh, A.; Gill, D.; Bhattacharya, S. Optoelectronic properties of chalcogenide perovskites by many-body perturbation theory. J. Phys. Chem. Lett. 2021, 12, 5301–5307.

[30]

Wang, F.; Zou, X. M.; Xu, M. J.; Wang, H.; Wang, H. L.; Guo, H. J.; Guo, J. X.; Wang, P.; Peng, M.; Wang, Z. et al. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 2021, 8, 2100569.

File
12274_2023_5412_MOESM1_ESM.pdf (726.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2022
Revised: 12 December 2022
Accepted: 16 December 2022
Published: 15 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62104215 and 12074347), China Postdoctoral Science Foundation (Nos. 2020M672257 and 2020TQ0286), Natural Science Foundation of Henan Province of China (No. 202300410439), and Department of Science and Technology of Henan Province of China (No. 202102210214).

Return