Journal Home > Volume 16 , Issue 5

Bacterial infections exacerbate the formation of bacterial biofilms, leading to resistance to traditional drugs, persistent infection, and even threatening patient’s life. Efficient antimicrobial materials against drug-resistant bacterial biofilms are highly desired. In this study, a photodynamic nanodrug with bacterial targeting was constructed by cooperative coordination of zinc ion with an antimicrobial peptide with hydrophobic tripeptides on the side chains and the photosensitizer chlorin e6. The supramolecular nanodrug with a uniform spherical structure possessed high photosensitizer loading capacity and enhanced photodynamic efficacy, which could deep penetrate and eradicate methicillin-resistant Staphylococcus aureus (MRSA) biofilms upon 655 nm laser irradiation. Furthermore, in vivo experiments verified the efficient elimination of MRSA biofilms on implanted catheters. This study provides a novel strategy to fabricate metalloprotein-inspired supramolecular photodynamic nanodrugs against drug-resistant bacterial biofilms-associated infections in vivo.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metalloprotein-inspired supramolecular photodynamic nanodrugs by multicomponent coordination for deep penetration and enhanced biofilm eradication

Show Author's information Zhuo-Ran Yang1,§Jingyi Xiong1,§Sirui Wei2Kehan Du1Huimin Qin1Teng Ma1Niannian Lv1Xinyu Yu2Hao Jiang1( )Jintao Zhu1( )
Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China

§ Zhuo-Ran Yang and Jingyi Xiong contributed equally to this work.

Abstract

Bacterial infections exacerbate the formation of bacterial biofilms, leading to resistance to traditional drugs, persistent infection, and even threatening patient’s life. Efficient antimicrobial materials against drug-resistant bacterial biofilms are highly desired. In this study, a photodynamic nanodrug with bacterial targeting was constructed by cooperative coordination of zinc ion with an antimicrobial peptide with hydrophobic tripeptides on the side chains and the photosensitizer chlorin e6. The supramolecular nanodrug with a uniform spherical structure possessed high photosensitizer loading capacity and enhanced photodynamic efficacy, which could deep penetrate and eradicate methicillin-resistant Staphylococcus aureus (MRSA) biofilms upon 655 nm laser irradiation. Furthermore, in vivo experiments verified the efficient elimination of MRSA biofilms on implanted catheters. This study provides a novel strategy to fabricate metalloprotein-inspired supramolecular photodynamic nanodrugs against drug-resistant bacterial biofilms-associated infections in vivo.

Keywords: photodynamic therapy, supramolecular assembly, coordination, deep penetration, biofilm eradication

References(38)

[1]

Rosenthal, V. D. Health-care-associated infections in developing countries. Lancet 2011, 377, 186–188.

[2]

Cao, B.; Lyu, X. M.; Wang, C. Y.; Lu, S. Y.; Xing, D.; Hu, X. L. Rational collaborative ablation of bacterial biofilms ignited by physical cavitation and concurrent deep antibiotic release. Biomaterials 2020, 262, 120341.

[3]

Hussain, M.; Suo, H.; Xie, Y.; Wang, K.; Wang, H.; Hou, Z. Y.; Gao, Y. J.; Zhang, L. B.; Tao, J.; Jiang, H. et al. Dopamine-substituted multidomain peptide hydrogel with inherent antimicrobial activity and antioxidant capability for infected wound healing. ACS Appl. Mater. Interfaces 2021, 13, 29380–29391.

[4]

Gollan, B.; Grabe, G.; Michaux, C.; Helaine, S. Bacterial persisters and infection: Past, present, and progressing. Annu. Rev. Microbiol. 2019, 73, 359–385.

[5]

Ma, W.; Chen, X. Y.; Fu, L. Q.; Zhu, J. W.; Fan, M. N.; Chen, J. P.; Yang, C.; Yang, G. Z.; Wu, L. H.; Mao, G. X. et al. Ultra-efficient antibacterial system based on photodynamic therapy and CO gas therapy for synergistic antibacterial and ablation biofilms. ACS Appl. Mater. Interfaces 2020, 12, 22479–22491.

[6]

Hetrick, E. M.; Schoenfisch, M. H. Reducing implant-related infections: Active release strategies. Chem. Soc. Rev. 2006, 35, 780–789.

[7]

Roy, S.; Santra, S.; Das, A.; Dixith, S.; Sinha, M.; Ghatak, S.; Ghosh, N.; Banerjee, P.; Khanna, S.; Mathew-Steiner, S. et al. Staphylococcus aureus biofilm infection compromises wound healing by causing deficiencies in granulation tissue collagen. Ann. Surg. 2020, 271, 1174–1185.

[8]

Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122.

[9]

Costerton, J. W.; Stewart, P. S.; Greenberg, E. P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322.

[10]

Fan, M. N.; Si, J. X.; Xu, X. G.; Chen, L. F.; Chen, J. P.; Yang, C.; Zhu, J. W.; Wu, L. H.; Tian, J.; Chen, X. Y. et al. A versatile chitosan nanogel capable of generating AgNPs in-situ and long-acting slow-release of Ag+ for highly efficient antibacterial. Carbohydr. Polym. 2021, 257, 117636.

[11]

Arciola, C. R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J. W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012, 33, 5967–5982.

[12]

Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y. X.; Bonsu, E.; Sintim, H. O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015, 7, 493–512.

[13]

Yin, W.; Wang, Y. T.; Liu, L.; He, J. Biofilms: The microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 2019, 20, 3423.

[14]

Ribeiro, S. M.; Felício, M. R.; Boas, E. V.; Gonçalves, S.; Costa, F. F.; Samy, R. P.; Santos, N. C.; Franco, O. L. New frontiers for anti-biofilm drug development. Pharmacol. Ther. 2016, 160, 133–144.

[15]

Klausen, M.; Ucuncu, M.; Bradley, M. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy. Molecules 2020, 25, 5239.

[16]

Zhou, Y.; Deng, W. M.; Mo, M. L.; Luo, D. X.; Liu, H. H.; Jiang, Y.; Chen, W. J.; Xu, C. S. Stimuli-responsive nanoplatform-assisted photodynamic therapy against bacterial infections. Front. Med. (Lausanne.) 2021, 8, 729300.

[17]

Vatansever, F.; de Melo, W. C. M. A.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N. A.; Yin, R. et al. Antimicrobial strategies centered around reactive oxygen species—Bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989.

[18]

Xie, W. J.; Zhang, S.; Pan, F. W.; Chen, S.; Zhong, L.; Wang, J.; Pei, X. B. Nanomaterial-based ROS-mediated strategies for combating bacteria and biofilms. J. Mater. Res. 2021, 36, 822–845.

[19]

Wu, S. M.; Xu, C.; Zhu, Y. W.; Zheng, L.; Zhang, L. D.; Hu, Y.; Yu, B. R.; Wang, Y. G.; Xu, F. J. Biofilm-sensitive photodynamic nanoparticles for enhanced penetration and antibacterial efficiency. Adv. Funct. Mater. 2021, 31, 2103591.

[20]

Ibrahimova, V.; Denisov, S. A.; Vanvarenberg, K.; Verwilst, P.; Préat, V.; Guigner, J. M.; McClenaghan, N. D.; Lecommandoux, S.; Fustin, C. A. Photosensitizer localization in amphiphilic block copolymers controls photodynamic therapy efficacy. Nanoscale 2017, 9, 11180–11186.

[21]

Mosinger, J.; Lang, K.; Plíštil, L.; Jesenská, S.; Hostomský, J.; Zelinger, Z.; Kubát, P. Fluorescent polyurethane nanofabrics: A source of singlet oxygen and oxygen sensing. Langmuir 2010, 26, 10050–10056.

[22]

Shirley, D. J.; Chrom, C. L.; Richards, E. A.; Carone, B. R.; Caputo, G. A. Antimicrobial activity of a porphyrin binding peptide. Peptide Sci. 2018, 110, e24074.

[23]

Cheng, Y. J.; Qin, S. Y.; Liu, W. L.; Ma, Y. H.; Chen, X. S.; Zhang, A. Q.; Zhang, X. Z. Dual-targeting photosensitizer-peptide amphiphile conjugate for enzyme-triggered drug delivery and synergistic chemo-photodynamic tumor therapy. Adv. Mater. Interfaces 2020, 7, 2000935.

[24]

Chen, S.; Liu, Y. Z.; Liang, R.; Hong, G. B.; An, J.; Peng, X. J.; Zheng, W. H.; Song, F. L. Self-assembly of amphiphilic peptides to construct activatable nanophotosensitizers for theranostic photodynamic therapy. Chin. Chem. Lett. 2021, 32, 3903–3906.

[25]

Lei, X. L.; Qiu, L.; Lan, M.; Du, X. C.; Zhou, S. W.; Cui, P. F.; Zheng, R. H.; Jiang, P. J.; Wang, J. H.; Xia, J. Antibacterial photodynamic peptides for staphylococcal skin infection. Biomater. Sci. 2020, 8, 6695–6702.

[26]

Gao, Q.; Huang, D. N.; Deng, Y. Y.; Yu, W. J.; Jin, Q.; Ji, J.; Fu, G. S. Chlorin e6 (Ce6)-loaded supramolecular polypeptide micelles with enhanced photodynamic therapy effect against Pseudomonas aeruginosa. Chem. Eng. J. 2021, 417, 129334.

[27]

Suo, H. N.; Hussain, M.; Wang, H.; Zhou, N. Y.; Tao, J.; Jiang, H.; Zhu, J. T. Injectable and pH-sensitive hyaluronic acid-based hydrogels with on-demand release of antimicrobial peptides for infected wound healing. Biomacromolecules 2021, 22, 3049–3059.

[28]

Xiong, J. Y.; Yang, Z. R.; Lv, N. N.; Du, K. H.; Suo, H. N.; Du, S.; Tao, J.; Jiang, H.; Zhu, J. T. Self-adhesive hyaluronic acid/antimicrobial peptide composite hydrogel with antioxidant capability and photothermal activity for infected wound healing. Macromol. Rapid Commun. 2022, 43, 2200176.

[29]

Wang, C. L.; Chen, P.; Qiao, Y. B.; Kang, Y.; Guo, S. Y.; Wu, D. F.; Wang, J.; Wu, H. Bacteria-activated chlorin e6 ionic liquid based on cation and anion dual-mode antibacterial action for enhanced photodynamic efficacy. Biomater. Sci. 2019, 7, 1399–1410.

[30]

Paoli, M.; Liddington, R.; Tame, J.; Wilkinson, A.; Dodson, G. Crystal structure of T state haemoglobin with oxygen bound at all four haems. J. Mol. Biol. 1996, 256, 775–792.

[31]

Lv, N. N.; Yin, X. Y.; Yang, Z. R.; Ma, T.; Qin, H. M.; Xiong, B. J.; Jiang, H.; Zhu, J. T. Electrostatically controlled ex-situ and in-situ polymerization of diacetylene-containing peptide amphiphiles in living cells. ACS Macro Lett. 2022, 11, 223–229.

[32]

Lv, N. N.; Ma, T.; Qin, H. M.; Yang, Z. R.; Wu, Y. G.; Li, D. Q.; Tao, J.; Jiang, H.; Zhu, J. T. ROS-initiated in-situ polymerization of diacetylene-containing lipidated peptide amphiphile in living cells. Sci. China Mater. 2022, 65, 2861–2870.

[33]

Zhang, J.; Liu, Z. Z.; Chen, R. B.; Ma, Q. W.; Lyu, Q.; Fu, S. H.; He, Y. F.; Xiao, Z. J.; Luo, Z.; Luo, J. M. et al. A MALDI-TOF mass spectrometry-based haemoglobin chain quantification method for rapid screen of thalassaemia. Ann. Med. 2022, 54, 293–301.

[34]

Li, S. K.; Zou, Q. L.; Li, Y. X.; Yuan, C. Q.; Xing, R. R.; Yan, X. H. Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly. J. Am. Chem. Soc. 2018, 140, 10794–10802.

[35]

Ma, T.; Chen, R.; Lv, N. N.; Chen, Y.; Qin, H. M.; Jiang, H.; Zhu, J. T. Size-transformable bicomponent peptide nanoparticles for deep tumor penetration and photo–chemo combined antitumor therapy. Small 2022, 18, 2106291.

[36]

Yao, L. T.; Wu, X. H.; Wu, S. Y.; Pan, X. Y.; Tu, J. Y.; Chen, M. Y.; Al-Bishari, A. M.; Al-Baadani, M. A.; Yao, L. L.; Shen, X. K. et al. Atomic layer deposition of zinc oxide on microrough zirconia to enhance osteogenesis and antibiosis. Ceram. Int. 2019, 45, 24757–24767.

[37]

Cheng, H. Y.; Mao, L.; Wang, L. L.; Hu, H.; Chen, Y. Y.; Gong, Z. N.; Wang, C. J.; Chen, J. S.; Li, R.; Zhu, Z. H. Bidirectional regulation of zinc embedded titania nanorods: Antibiosis and osteoblastic cell growth. RSC Adv. 2015, 5, 14470–14481.

[38]

Gao, Y. F.; Wang, J.; Hu, D. F.; Deng, Y. Y.; Chen, T. T.; Jin, Q.; Ji, J. Bacteria-targeted supramolecular photosensitizer delivery vehicles for photodynamic ablation against biofilms. Macromol. Rapid Commun. 2019, 40, 1800763.

File
12274_2022_5392_MOESM1_ESM.pdf (683.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 September 2022
Revised: 06 December 2022
Accepted: 08 December 2022
Published: 10 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 52173124) and the Fundamental Research Funds for the Central Universities (No. 2172019kfyXJJS070). The authors are grateful to HUST Analytical and Testing Center for their supports on its facilities.

Return