Journal Home > Volume 16 , Issue 5

Phosphorylation of tau at Ser (396, 404) (p-tau396,404) is one of the earliest phosphorylation events, and plasma p-tau396,404 level appears to be a potentially promising biomarker of Alzheimer’s disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau396,404 levels. Herein, based on our screening of a pair of p-tau396,404-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau396,404 levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrasensitive and point-of-care detection of plasma phosphorylated tau in Alzheimer’s disease using colorimetric and surface-enhanced Raman scattering dual-readout lateral flow assay

Show Author's information Liding Zhang1,2,§Ying Su3,§Xiaohan Liang1,2Kai Cao1,2Qingming Luo4,5Haiming Luo1,2,5( )
Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215123, China

§ Liding Zhang and Ying Su contributed equally to this work.

Abstract

Phosphorylation of tau at Ser (396, 404) (p-tau396,404) is one of the earliest phosphorylation events, and plasma p-tau396,404 level appears to be a potentially promising biomarker of Alzheimer’s disease (AD). The low abundance and easy degradation of p-tau in the plasma make the lateral flow assay (LFA) a suitable choice for point-of-care detection of plasma p-tau396,404 levels. Herein, based on our screening of a pair of p-tau396,404-specific antibodies, we developed a colorimetric and surface-enhanced Raman scattering (SERS) dual-readout LFA for the rapid, highly sensitive, and robust detection of plasma p-tau396,404 levels. This LFA realized a detection limit of 60 pg/mL by the naked eye or 3.8 pg/mL by SERS without cross-reacting with other tau species. More importantly, LFA rapidly and accurately differentiated AD patients from healthy controls, suggesting that it has the potential for clinical point-of-care application in AD diagnosis. This dual-readout LFA has the advantages of simple operation, rapid, and ultra-sensitive detection, providing a new way for early AD diagnosis and intervention, especially in primary and community AD screening.

Keywords: Alzheimer’s disease, surface-enhanced Raman scattering, lateral flow assay, p-tau396,404, plasma detection

References(58)

[1]

McDade, E.; Bateman. R. J. Stop Alzheimer's before it starts. Nature 2017, 547, 153–155.

[2]

Lane, C. A.; Hardy, J.; Schott. J. M. Alzheimer's disease. Eur. J. Neurol. 2018, 25, 59–70.

[3]

Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C. E.; Cummings. J.; van der Flier, W. M. Alzheimer's disease. Lancet 2021, 397, 1577–1590.

[4]

GBD 2016 Dementia Collaborators. Global, regional, and national burden of Alzheimer's disease and other dementias. 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 88–106.

[5]

Ittner, L. M.; Götz. J. Amyloid-β and tau—A toxic pas de deux in Alzheimer's disease. Nat. Rev. Neurosci. 2011, 12, 65–72.

[6]

Hardy, J. A.; Higgins. G. A. Alzheimer's disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185.

[7]

Giacobini, E.; Gold. G. Alzheimer disease therapy-moving from amyloid-β to tau. Nat. Rev. Neurol. 2013, 9, 677–686.

[8]

Ballard, C.; Gauthier, S.; Corbett, A.; Brayne, C.; Aarsland, D.; Jones. E. Alzheimer's disease. Lancet 2011, 377, 1019–1031.

[9]

Brazaca, L. C.; Moreto, J. R.; Martín, A.; Tehrani, F.; Wang, J.; Zucolotto. V. Colorimetric paper-based immunosensor for simultaneous determination of fetuin B and clusterin toward early Alzheimer's diagnosis. ACS Nano 2019, 13, 13325–13332.

[10]

Zhang, L. D.; Liang, X. H.; Zhang, Z. H.; Luo. H. M. Cerebrospinal fluid and blood biomarkers in the diagnostic assays of Alzheimer’s disease. J. Innov. Opt. Health Sci. 2022, 15, 2230001.

[11]

Hu, S.; Yang, C. W.; Li, Y. Q.; Luo, Q. M.; Luo. H. M. Nanozyme sensor array based on manganese dioxide for the distinction between multiple amyloid β peptides and their dynamic aggregation process. Biosens. Bioelectron. 2022, 199, 113881.

[12]

Mondragón-Rodríguez, S.; Perry, G.; Luna-Muñoz, J.; Acevedo-Aquino, M. C.; Williams. S. Phosphorylation of tau protein at sites Ser396-404 is one of the earliest events in Alzheimer's disease and Down syndrome. Neuropathol. Appl. Neurobiol. 2014, 40, 121–135.

[13]

Gomes, L. A.; Uytterhoeven, V.; Lopez-Sanmartin, D.; Tomé, S. O.; Tousseyn, T.; Vandenberghe, R.; Vandenbulcke, M.; von Arnim, C. A. F.; Verstreken, P.; Thal. D. R. Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol. 2021, 141, 173–192.

[14]

Ma, H.; Liu, S. L.; Liu, Y. W.; Zhu, J. Y.; Han, X. X.; Ozaki, Y.; Zhao. B. In-situ fingerprinting phosphorylated proteins via surface-enhanced Raman spectroscopy: Single-site discrimination of Tau biomarkers in Alzheimer's disease. Biosens. Bioelectron. 2021, 171, 112748.

[15]

Shi, Y. C.; Gu, L. H.; Wang, Q.; Gao, L. J.; Zhu, J. L.; Lu, X.; Zhou, F. F.; Zhu, D.; Zhang, H. S.; Xie, C. M. et al. Platelet amyloid-β protein precursor (AβPP) ratio and phosphorylated tau as promising indicators for early Alzheimer's disease. J. Gerontol. Ser. A 2020, 75, 664–670.

[16]

Fiandaca, M. S.; Kapogiannis, D.; Mapstone, M.; Boxer, A.; Eitan, E.; Schwartz, J. B.; Abner, E. L.; Petersen, R. C.; Federoff, H. J.; Miller, B. L. et al. Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimers Dement. 2015, 11, 600–607.e1.

[17]

Zhang, L.; Cao, K.; Su, Y; Hu, S.; Liang, X.; Luo, Q.; Luo, H. Colorimetric and surface-enhanced Raman scattering dual-mode magnetic immunosensor for ultrasensitive detection of blood phosphorylated tau in Alzheimer’s disease. Biosens Bioelectron. 2023, 222, 114935.

[18]

Ashton, N. J.; Pascoal, T. A.; Karikari, T. K.; Benedet, A. L.; Lantero-Rodriguez, J.; Brinkmalm, G.; Snellman, A.; Schöll, M.; Troakes, C.; Hye, A. et al. Plasma p-tau231: A new biomarker for incipient Alzheimer's disease pathology. Acta Neuropathol. 2021, 141, 709–724.

[19]

Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T. G.; Serrano, G. E.; Chai, X. Y.; Proctor, N. K.; Eichenlaub, U.; Zetterberg, H. et al. Plasma P-tau181 in Alzheimer's disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat. Med. 2020, 26, 379–386.

[20]

Thambisetty, M.; Lovestone. S. Blood-based biomarkers of Alzheimer's disease: Challenging but feasible. Biomark. Med. 2010, 4, 65–79.

[21]

Hampel, H.; O'Bryant, S. E.; Molinuevo, J. L.; Zetterberg, H.; Masters, C. L.; Lista, S.; Kiddle, S. J.; Batrla, R.; Blennow. K. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat. Rev. Neurol. 2018, 14, 639–652.

[22]

Foley, A. R.; Roseman, G. P.; Chan, K.; Smart, A.; Finn, T. S.; Yang, K.; Lokey, R. S.; Millhauser, G. L.; Raskatov. J. A. Evidence for aggregation-independent, PrPC-mediated Aβ cellular internalization. Proc. Natl. Acad. Sci. USA 2020, 117, 28625–28631.

[23]

Cintron, A. F.; Dalal, N. V.; Dooyema, J.; Betarbet, R.; Walker. L. C. Transport of cargo from periphery to brain by circulating monocytes. Brain Res. 2015, 1622, 328–338.

[24]

Boluda, S.; Iba, M.; Zhang, B.; Raible, K. M.; Lee. V. M. Y.; Trojanowski, J. Q. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer's disease or corticobasal degeneration brains. Acta Neuropathol. 2015, 129, 221–237.

[25]

Clavaguera, F.; Grueninger, F.; Tolnay. M. Intercellular transfer of tau aggregates and spreading of tau pathology: Implications for therapeutic strategies. Neuropharmacology 2014, 76, 9–15.

[26]

Guo, J. L.; Lee. V. M. Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 2014, 20, 130–138.

[27]

Ye, L.; Hamaguchi, T.; Fritschi, S. K.; Eisele, Y. S.; Obermüller, U.; Jucker, M.; Walker. L. C. Progression of seed-induced Aβ deposition within the limbic connectome. Brain Pathol. 2015, 25, 743–752.

[28]

Lakshmi, S.; Essa, M. M.; Hartman, R. E.; Guillemin, G. J.; Sivan, S.; Elumalai. P. Exosomes in Alzheimer's disease: Potential role as pathological mediators, biomarkers and therapeutic targets. Neurochem. Res. 2020, 45, 2553–2559.

[29]

Jia, L. F.; Qiu, Q. Q.; Zhang, H.; Chu, L.; Du, Y. F.; Zhang, J. W.; Zhou, C. K.; Liang, F. R.; Shi, S. L.; Wang, S. et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement. 2019, 15, 1071–1080.

[30]

Barthélemy, N. R.; Horie, K.; Sato, C.; Bateman. R. J. Blood plasma phosphorylated-tau isoforms track CNS change in Alzheimer's disease. J. Exp. Med. 2020, 217, e20200861.

[31]

Thijssen, E. H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S. et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer's disease and frontotemporal lobar degeneration. Nat. Med. 2020, 26, 387–397.

[32]

Hanger, D. P.; Anderton, B. H.; Noble. W. Tau phosphorylation: The therapeutic challenge for neurodegenerative disease. Trends Mol. Med. 2009, 15, 112–119.

[33]

Liu, L.; Kwak, H.; Lawton, T. L.; Jin, S. X.; Meunier, A. L.; Dang, Y. F.; Ostaszewski, B.; Pietras, A. C.; Stern, A. M.; Selkoe. D. J. An ultra-sensitive immunoassay detects and quantifies soluble Aβ oligomers in human plasma. Alzheimers Dement. 2022, 18, 1186–1202.

[34]

Palmqvist, S.; Janelidze, S.; Quiroz, Y. T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y. H.; Serrano, G. E.; Leuzy, A. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 2020, 324, 772–781.

[35]

Liu, Y. L.; Zhan, L.; Qin, Z. P.; Sackrison, J.; Bischof. J. C. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 2021, 15, 3593–3611.

[36]

Ren, W.; Mohammed, S. I.; Wereley, S.; Irudayaraj. J. Magnetic focus lateral flow sensor for detection of cervical cancer biomarkers. Anal. Chem. 2019, 91, 2876–2884.

[37]

Ruppert, C.; Kaiser, L.; Jacob, L. J.; Laufer, S.; Kohl, M.; Deigner. H. P. Duplex Shiny app quantification of the sepsis biomarkers C-reactive protein and interleukin-6 in a fast quantum dot labeled lateral flow assay. J. Nanobiotechnol. 2020, 18, 130.

[38]

Kim, H. M.; Kim, J.; An, J.; Bock, S.; Pham, X. H.; Huynh, K. H.; Choi, Y.; Hahm, E.; Song, H.; Kim, J. W. et al. Au-Ag assembled on silica nanoprobes for visual semiquantitative detection of prostate-specific antigen. J. Nanobiotechnol. 2021, 19, 73.

[39]

Liu, Q. Y.; Cheng, S. M.; Chen, R.; Ke, J. M.; Liu, Y. W.; Li, Y. F.; Feng, W.; Li. F. Y. Near-infrared lanthanide-doped nanoparticles for a low interference lateral flow immunoassay test. ACS Appl. Mater. Interfaces 2020, 12, 4358–4365.

[40]

Ji, T. X.; Xu, X. Q.; Wang, X. D.; Cao, N.; Han, X. R.; Wang, M. H.; Chen, B.; Lin, Z.; Jia, H. Y.; Deng, M. et al. Background-free chromatographic detection of sepsis biomarker in clinical human serum through near-infrared to near-infrared upconversion immunolabeling. ACS Nano 2020, 14, 16864–16874.

[41]

Xu, K. C.; Zhou, R.; Takei, K.; Hong, M. H. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. (Weinh.) 2019, 6, 1900925.

[42]

Madzharova, F.; Heiner, Z.; Kneipp. J. Surface enhanced hyper Raman scattering (SEHRS) and its applications. Chem. Soc. Rev. 2017, 46, 3980–3999.

[43]

Xia, C.; Zhang, D.; Li, H.; Li, S.; Liu, H.; Ding, L.; Liu, X.; Lyu, M.; Li, R.; Yang, J. et al. Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Research. 2022, 15, 694–700.

[44]

Shi, L. L.; Xu, L.; Xiao, R. H.; Zhou, Z.; Wang, C. W.; Wang, S. Q.; Gu, B. Rapid, quantitative. high-sensitive detection of Escherichia coli O157: H7 by gold-shell silica-core nanospheres-based surface-enhanced Raman scattering lateral flow immunoassay. Front. Microbiol. 2020, 11, 596005.

[45]

Fu, X. L.; Wen, J. H.; Li, J. W.; Lin, H.; Liu, Y. M.; Zhuang, X. M.; Tian, C. Y.; Chen. L. X. Highly sensitive detection of prostate cancer specific PCA3 mimic DNA using SERS-based competitive lateral flow assay. Nanoscale 2019, 11, 15530–15536.

[46]

Tian, M.; Wang, J.; Li, C.; Wang, Z.; Liu, G.; Lv, E.; Zhao, X.; Li, Z.; Cao, D.; Liu, H. et al. Qualitative and quantitative detection of microcystin-LR based on SERS-FET dual-mode biosensor. Biosens Bioelectron. 2022, 212, 114434.

[47]

Kim, K.; Han, D. K.; Choi, N.; Kim, S. H.; Joung, Y.; Kim, K.; Ho, N. T.; Joo, S. W.; Choo. J. Surface-enhanced Raman scattering-based dual-flow lateral flow assay sensor for the ultrasensitive detection of the thyroid-stimulating hormone. Anal. Chem. 2021, 93, 6673–6681.

[48]

Cheng, N.; Lou, B.; Wang. H. An intelligent serological SERS test toward early-stage hepatocellular carcinoma diagnosis through ultrasensitive nanobiosensing. Nano Research. 2022, 15, 5331–5339.

[49]

Liang, J. J.; Teng, P. J.; Xiao, W.; He, G. B.; Song, Q. F.; Zhang, Y.; Peng, B.; Li, G.; Hu, L. S.; Cao, D. L. et al. Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. J. Nanobiotechnol. 2021, 19, 273.

[50]

Perrault, S. D.; Chan, W. C. W. Synthesis and surface modification of highly monodispersed. spherical gold nanoparticles of 50-200 nm. J. Am. Chem. Soc. 2009, 131, 17042–17043.

[51]

Zhang, L. D.; Du, X. W.; Su, Y.; Niu, S. Q.; Li, Y. Q.; Liang, X. H.; Luo. H. M. Quantitative assessment of AD markers using naked eyes: Point-of-care testing with paper-based lateral flow immunoassay. J. Nanobiotechnol. 2021, 19, 366.

[52]

Zhang, L. D.; Yang, C. W.; Li, Y. Q.; Niu, S. Q.; Liang, X. H.; Zhang, Z. H.; Luo, Q. M.; Luo. H. M. Dynamic changes in the levels of amyloid-β42 species in the brain and periphery of APP/PS1 mice and their significance for Alzheimer's disease. Front. Mol. Neurosci. 2021, 14, 723317.

[53]

Qu, W.; Zhang, L.; Liang, X.; Yu, Z.; Huang, H.; Zhao, J.; Guo, Y.; Zhou, X.; Xu, S.; Luo, H. et al. Elevated plasma oligomeric amyloid β-42 is associated with cognitive impairments in cerebral small vessel disease. Biosensors (Basel). 2023, 13, 110.

[54]

Abramoff, M. D.; Magelhaes, P. J.; Ram. S. J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42.

[55]

Zhang, L. D.; Du, X. W.; Chen, Z. X.; Chen, C. J.; Gong, N. X.; Song, Y. H.; Song, Y. Z.; Han, Q. Q.; Xia, X. S.; Luo, H. M. et al. Instrument-free and visual detection of salmonella based on magnetic nanoparticles and an antibody probe immunosensor. Int. J. Mol. Sci. 2019, 20, 4645.

[56]

Hu, Y. Y.; He, S. S.; Wang, X. C.; Duan, Q. H.; Grundke-Iqbal, I.; Iqbal, K.; Wang. J. Z. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer's disease patients: An ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol. 2002, 160, 1269–1278.

[57]

Phan, L. M. T.; Cho. S. Fluorescent aptasensor and colorimetric aptablot for p-tau231 detection: Toward early diagnosis of Alzheimer's disease. Biomedicines 2022, 10, 93.

[58]

Luk, C.; Giovannoni, G.; Williams, D. R.; Lees. A. J.; de Silva, R. Development of a sensitive ELISA for quantification of three- and four-repeat tau isoforms in tauopathies. J. Neurosci. Methods 2009, 180, 34–42.

File
12274_2022_5354_MOESM1_ESM.pdf (623.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 September 2022
Revised: 23 November 2022
Accepted: 24 November 2022
Published: 28 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors would like to thank the technical support from Xuewei Du of the China University of Geosciences and Associate Professor Jinyang Zhang of Kunming University of Science and Technology in the screening of monoclonal antibodies. This study was financially supported by the National Science and Technology Innovation 2030 (Nos. 2021ZD0201000 and 2021ZD0201001), the National Natural Science Foundation of China (No. 81971025), and the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (No. 2019-I2M-5-014). We also thank the Optical Bioimaging Core Facility and the Center for Nanoscale Characterization & Devices (CNCD) of WNLO-HUST, the Analytical and Testing Center of HUST, and the Research Core Facilities for Life Science (HUST) for support with data acquisition. We thank all patients and healthy individuals for donating their blood samples.

Return