Journal Home > Volume 16 , Issue 5

van der Waals heterostructures (vdWHs) based on two-dimensional (2D) materials without the crystal lattice matching constraint have great potential for high-performance optoelectronic devices. Herein, a WS2/InSe vdWH photodiode is proposed and fabricated by precisely stacking InSe and WS2 flakes through an all-dry transfer method. The WS2/InSe vdWH forms an n–n heterojunction with strong built-in electric field due to their intrinsic n-type semiconductor characteristics and energy-band alignments with a large Fermi level offset between WS2 and InSe. As a result, the device displays excellent photovoltaic behavior with a large open voltage of 0.47 V and a short-circuit current of 11.7 nA under 520 nm light illumination. Significantly, a fast rising/decay time of 63/76 μs, a large light on/off ratio of 105, a responsivity of 61 mA/W, a high detectivity of 2.5 × 1011 Jones, and a broadband photoresponse ranging from ultraviolet to near-infrared (325–980 nm) are achieved at zero bias. This study provides a strategy for developing high-performance self-powered broadband photodetectors based on 2D materials.


menu
Abstract
Full text
Outline
About this article

High-performance self-powered ultraviolet to near-infrared photodetector based on WS2/InSe van der Waals heterostructure

Show Author's information Jinping Chen1,§Zhen Zhang2,§Yi Ma1Jiying Feng3Xiaoyu Xie1Xiaoxuan Wang1Aoqun Jian2Yuanzheng Li3Zhuxin Li1Heng Guo1Yizhi Zhu1Qiannan Cui1Zengliang Shi1( )Chunxiang Xu1( )
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Micro Nano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of the Ministry of Education & College of Information Engineering and Computer, Taiyuan University of Technology, Taiyuan 030024, China
Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China

§ Jinping Chen and Zhen Zhang contributed equally to this work.

Abstract

van der Waals heterostructures (vdWHs) based on two-dimensional (2D) materials without the crystal lattice matching constraint have great potential for high-performance optoelectronic devices. Herein, a WS2/InSe vdWH photodiode is proposed and fabricated by precisely stacking InSe and WS2 flakes through an all-dry transfer method. The WS2/InSe vdWH forms an n–n heterojunction with strong built-in electric field due to their intrinsic n-type semiconductor characteristics and energy-band alignments with a large Fermi level offset between WS2 and InSe. As a result, the device displays excellent photovoltaic behavior with a large open voltage of 0.47 V and a short-circuit current of 11.7 nA under 520 nm light illumination. Significantly, a fast rising/decay time of 63/76 μs, a large light on/off ratio of 105, a responsivity of 61 mA/W, a high detectivity of 2.5 × 1011 Jones, and a broadband photoresponse ranging from ultraviolet to near-infrared (325–980 nm) are achieved at zero bias. This study provides a strategy for developing high-performance self-powered broadband photodetectors based on 2D materials.

Keywords: two-dimensional materials, van der Waals heterostructure, photocurrent, self-powered photodetector

References(52)

[1]

Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

[2]

Mueller, T.; Xia, F. N.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301.

[3]

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

[4]

Xu, Y. J.; Liu, C. L.; Guo, C.; Yu, Q.; Guo, W. L.; Lu, W.; Chen, X. S.; Wang, L.; Zhang, K. High performance near infrared photodetector based on in-plane black phosphorus p–n homojunction. Nano Energy 2020, 70, 104518.

[5]

Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

[6]

Jiang, J.; Wen, Y.; Wang, H.; Yin, L.; Cheng, R. Q.; Liu, C. S.; Feng, L. P.; He, J. Recent advances in 2D materials for photodetectors. Adv. Electron. Mater. 2021, 7, 2001125.

[7]

Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

[8]

Pak, S.; Lee, J.; Lee, Y. W.; Jang, A. R.; Ahn, S.; Ma, K. Y.; Cho, Y.; Hong, J.; Lee, S.; Jeong, H. Y. et al. Strain-mediated interlayer coupling effects on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 2017, 17, 5634–5640.

[9]

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

[10]

Hu, S. Q.; Xu, J. P.; Zhao, Q. H.; Luo, X. G.; Zhang, X. T.; Wang, T.; Jie, W. Q.; Cheng, Y. C.; Frisenda, R.; Castellanos-Gomez, A. et al. Gate-switchable photovoltaic effect in BP/MoTe2 van der Waals heterojunctions for self-driven logic optoelectronics. Adv. Opt. Mater. 2021, 9, 2001802.

[11]

Svatek, S. A.; Bueno-Blanco, C.; Lin, D. Y.; Kerfoot, J.; Macías, C.; Zehender, M. H.; Tobías, I.; García-Linares, P.; Taniguchi, T.; Watanabe, K. et al. High open-circuit voltage in transition metal dichalcogenide solar cells. Nano Energy 2021, 79, 105427.

[12]

Huang, X.; Feng, X. W.; Chen, L.; Wang, L.; Tan, W. C.; Huang, L.; Ang, K. W. Fabry–Perot cavity enhanced light–matter interactions in two-dimensional van der Waals heterostructure. Nano Energy 2019, 62, 667–673.

[13]

Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 2016, 9, 507–516.

[14]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[15]

Lu, Y. Y.; Guo, C. R.; Yeh, H. L.; Chen, H. W.; Kuo, C. C.; Hsu, J. H.; Jhou, J.; Huang, Y. T.; Hsieh, S. H.; Chen, C. H. et al. Multilayer GaSe/InSe heterointerface-based devices for charge transport and optoelectronics. ACS Appl. Nano Mater. 2020, 3, 11769–11776.

[16]

Xu, Z. J.; Lin, S. S.; Li, X. Q.; Zhang, S. J.; Wu, Z. Q.; Xu, W. L.; Lu, Y. H.; Xu, S. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy 2016, 23, 89–96.

[17]

Jia, C.; Huang, X. W.; Wu, D.; Tian, Y. Z.; Guo, J. W.; Zhao, Z. H.; Shi, Z. F.; Tian, Y. T.; Jie, J. S.; Li, X. J. An ultrasensitive self-driven broadband photodetector based on a 2D-WS2/GaAs type-II Zener heterojunction. Nanoscale 2020, 12, 4435–4444.

[18]

Feng, W.; Jin, Z.; Yuan, J.; Zhang, J.; Jia, S.; Dong, L.; Yoon, J.; Zhou, L.; Vajtai, R.; Tour, J. M. et al. A fast and zero-biased photodetector based on GaTe-InSe vertical 2D p–n heterojunction. 2D Mater. 2018, 5, 25008.

[19]

Tian, W.; Wang, Y. D.; Chen, L.; Li, L. Self-powered nanoscale photodetectors. Small 2017, 13, 1701848.

[20]

Qiao, H.; Huang, Z. Y.; Ren, X. H.; Liu, S. H.; Zhang, Y. P.; Qi, X.; Zhang, H. Self-powered photodetectors based on 2D materials. Adv. Opt. Mater. 2020, 8, 1900765.

[21]

Lv, L.; Yu, J.; Hu, M.; Yin, S. M.; Zhuge, F. W.; Ma, Y.; Zhai, T. Y. Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. Nanoscale 2021, 13, 6713–6751.

[22]

Gong, F.; Fang, H. H.; Wang, P.; Su, M.; Li, Q.; Ho, J. C.; Chen, X. S.; Lu, W.; Liao, L.; Wang, J. et al. Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions. Nanotechnology 2017, 28, 484002.

[23]

Dai, M. J.; Chen, H. Y.; Wang, F. K.; Long, M. S.; Shang, H. M.; Hu, Y. X.; Li, W.; Ge, C. Y.; Zhang, J.; Zhai, T. Y. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 2020, 14, 9098–9106.

[24]

Lin, P.; Yang, J. K. Tunable WSe2/WS2 van der Waals heterojunction for self-powered photodetector and photovoltaics. J. Alloys Compd. 2020, 842, 155890.

[25]

Zhao, S. W.; Wu, J. C.; Jin, K.; Ding, H. Y.; Li, T. S.; Wu, C. Z.; Pan, N.; Wang, X. P. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p–n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.

[26]

Kim, C. O.; Kim, S.; Shin, D. H.; Kang, S. S.; Kim, J. M.; Jang, C. W.; Joo, S. S.; Lee, J. S.; Kim, J. H.; Choi, S. H. et al. High photoresponsivity in an all-graphene p–n vertical junction photodetector. Nat. Commun. 2014, 5, 3249.

[27]

Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

[28]

Zhao, Q. H.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. InSe Schottky diodes based on van der Waals contacts. Adv. Funct. Mater. 2020, 30, 2001307.

[29]

Han, L. X.; Yang, M. M.; Wen, P. T.; Gao, W.; Huo, N. J.; Li, J. B. A high performance self-powered photodetector based on a 1D Te-2D WS2 mixed-dimensional heterostructure. Nanoscale Adv. 2021, 3, 2657–2665.

[30]

Chen, P.; Pi, L. J.; Li, Z. X.; Wang, H. Y.; Xu, X.; Li, D. Y.; Zhou, X.; Zhai, T. Y. GeSe/MoTe2 vdW heterostructure for UV–VIS–NIR photodetector with fast response. Appl. Phys. Lett. 2022, 121, 21103.

[31]

Yin, J.; Liu, L.; Zang, Y. S.; Ying, A. N.; Hui, W. J.; Jiang, S. S.; Zhang, C. Q.; Yang, T.; Chueh, Y. L.; Li, J. et al. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light Sci. Appl. 2021, 10, 113.

[32]

Hu, S. Q.; Luo, X. G.; Xu, J. P.; Zhao, Q. H.; Cheng, Y. C.; Wang, T.; Jie, W. Q.; Castellanos-Gomez, A.; Gan, X. T.; Zhao, J. L. Reconfigurable InSe electronics with van der Waals integration. Adv. Electron. Mater. 2022, 8, 2101176.

[33]

Huang, Y.; Zhuge, F. W.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062–4073.

[34]

Tan, C. Y.; Wang, H. H.; Zhu, X. D.; Gao, W. S.; Li, H.; Chen, J. W.; Li, G.; Chen, L. J.; Xu, J. M.; Hu, X. Z. et al. A self-powered photovoltaic photodetector based on a lateral WSe2-WSe2 homojunction. ACS Appl. Mater. Interfaces 2020, 12, 44934–44942.

[35]

Wu, F.; Li, Q.; Wang, P.; Xia, H.; Wang, Z.; Wang, Y.; Luo, M.; Chen, L.; Chen, F. S.; Miao, J. S. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 2019, 10, 4663.

[36]

Zhao, Q. H.; Wang, W.; Carrascoso-Plana, F.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Mater. Horiz. 2020, 7, 252–262.

[37]

Duan, J. M.; Chava, P.; Ghorbani-Asl, M.; Lu, Y. F.; Erb, D.; Hu, L.; Echresh, A.; Rebohle, L.; Erbe, A.; Krasheninnikov, A. V. et al. Self-driven broadband photodetectors based on MoSe2/FePS3 van der Waals n–p type-II heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 11927–11936.

[38]
Chen, X. X.; Yang, X.; Lou, Q.; Tian, Y. Z.; Liu, Z. Y.; Lv, C. F.; Chen, Y. C.; Dong, L.; Shan, C. X. Ultrasensitive broadband position-sensitive detector based on graphitic carbon nitride. Nano Res., in press, https://doi.org/10.1007/s12274-022-4780-x.
[39]

Chen, Y. C.; Yang, X.; Zhang, Y.; Chen, X. X.; Sun, J. L.; Xu, Z. Y.; Li, K. Y.; Dong, L.; Shan, C. X. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Res. 2022, 15, 3711–3719.

[40]

Wang, L.; Huang, L.; Tan, W. C.; Feng, X. W.; Chen, L.; Huang, X.; Ang, K. W. 2D photovoltaic devices: Progress and prospects. Small Methods 2018, 2, 1700294.

[41]

Shi, L. L.; Chen, K. Q.; Zhai, A. P.; Li, G. H.; Fan, M. M.; Hao, Y. Y.; Zhu, F. R.; Zhang, H.; Cui, Y. X. Status and outlook of metal–inorganic semiconductor–metal photodetectors. Laser Photonics Rev. 2021, 15, 2000401.

[42]

Xu, Q.; Yang, Z.; Peng, D. F.; Xi, J. G.; Lin, P.; Cheng, Y.; Liu, K. H.; Pan, C. F. WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. Nano Energy 2019, 65, 104001.

[43]

Wang, H. Y.; Wang, W.; Zhong, Y. L.; Li, D. Y.; Li, Z. X.; Xu, X.; Song, X. Y.; Chen, Y. X.; Huang, P.; Mei, A. Y. et al. Approaching the external quantum efficiency limit in 2D photovoltaic devices. Adv. Mater. 2022, 34, 2206122.

[44]

Yan, Y. F.; Abbas, G.; Li, F.; Li, Y.; Zheng, B. F.; Wang, H. D.; Liu, F. S. Self-driven high performance broadband photodetector based on SnSe/InSe van der Waals heterojunction. Adv. Mater. Interfaces 2022, 9, 2102068.

[45]

Kwak, D. H.; Ra, H. S.; Jeong, M. H.; Lee, A. Y.; Lee, J. S. High-performance photovoltaic effect with electrically balanced charge carriers in black phosphorus and WS2 heterojunction. Adv. Mater. Interfaces 2018, 5, 1800671.

[46]

Ning, J.; Zhou, Y.; Zhang, J. C.; Lu, W.; Dong, J. G.; Yan, C. C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H. et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104.

[47]

Wang, H. M.; Wang, Y. R.; Li, X.; Liu, X. L.; Zheng, X.; Shi, Y. Q.; Xu, M. X.; Zhang, J.; Zhang, Q. Self-powered photodetectors based on stacked WSe2/graphene/SnS2 p–g–n heterostructures. J. Alloys Compd. 2022, 920, 165974.

[48]

Chen, Y. F.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X. L.; Ye, J. F.; Chen, Y.; Xie, R. Z.; Zhou, Y. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363.

[49]

Yan, Y.; Li, S. S.; Du, J.; Yang, H.; Wang, X. T.; Song, X. H.; Li, L. X.; Li, X. P.; Xia, C. X.; Liu, Y. F. et al. Reversible half wave rectifier based on 2D InSe/GeSe heterostructure with near-broken band alignment. Adv. Sci. 2021, 8, 1903252.

[50]

Mudd, G. W.; Svatek, S. A.; Hague, L.; Makarovsky, O.; Kudrynskyi, Z. R.; Mellor, C. J.; Beton, P. H.; Eaves, L.; Novoselov, K. S.; Kovalyuk, Z. D. et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures. Adv. Mater. 2015, 27, 3760–3766.

[51]

Liu, J.; Lo, T. W.; Sun, J. H.; Yip, C. T.; Lam, C. H.; Lei, D. Y. A comprehensive comparison study on the vibrational and optical properties of CVD-grown and mechanically exfoliated few-layered WS2. J. Mater. Chem. C 2017, 5, 11239–11245.

[52]

Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 2014, 1, 011002.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2022
Revised: 10 November 2022
Accepted: 12 November 2022
Published: 29 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11734005, 61821002, 62075041, 12004069, and 62204157), the National Key Research and Development Program of China (Nos. 2018YFA0209101 and 2017YFA0700500), and the Fundamental Research Funds for the Central Universities (No. 2242021k10009).

Return