Journal Home > Volume 16 , Issue 6

Lithium-sulfur (Li-S) batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg−1. However, poor cycle stability resulting from notorious shuttle effect and the safety concerns deriving from flammability of ether-based electrolyte hinder the practical application of Li-S batteries. Because of low solubility to polysulfide, high ionic conductivity, and safety property, sulfide-based electrolytes can fundamentally address above issues. It is widely known that the effective transports of both electrons and ions are basic requirement for redox reaction of active materials in cathode. Thereby, construction of fast and stable ionic and electronic transport paths in cathode is especially pivotal for cycle stability of solid-state Li-S batteries (SSLSBs). In this review, we provide research progresses on facilitating transport of charge carriers in composite cathode of SSLSBs. From perspective of materials, intrinsically conductivity of electrolyte and carbon shows dramatic effect on migration of charge carriers in cathode of SSLSBs, thereby the conductive additives are summarized in the manuscript. Additionally, the charge transport in cathode of SSLSBs fully depends on the physical contact between active materials and conductive additives, therefore we summarized the strategies optimizing interfacial contact and reducing interfacial resistance. Finally, potential future research directions and prospects for SSLSBs with improved energy density and cycle performance are also proposed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Optimization on transport of charge carriers in cathode of sulfide electrolyte-based solid-state lithium-sulfur batteries

Show Author's information Zengqi Zhang1,§Yantao Wang1,2,§Tao Liu1Gang Li1Jun Ma1Jianjun Zhang1Pengxian Han1Shanmu Dong1Xuedong Yan3Yue Tang4( )Guanglei Cui1,2( )
Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
College of Chemical Engineering, Ningbo Polytechnic, Ningbo 315800, China
The Biodesign Institute and School of Molecular Sciences, Arizona State University Tempe, Arizona 85287, USA

§ Zengqi Zhang and Yantao Wang contributed equally to this work.

Abstract

Lithium-sulfur (Li-S) batteries are considered as promising candidates for novel energy storage technology that achieves energy density of 500 Wh·kg−1. However, poor cycle stability resulting from notorious shuttle effect and the safety concerns deriving from flammability of ether-based electrolyte hinder the practical application of Li-S batteries. Because of low solubility to polysulfide, high ionic conductivity, and safety property, sulfide-based electrolytes can fundamentally address above issues. It is widely known that the effective transports of both electrons and ions are basic requirement for redox reaction of active materials in cathode. Thereby, construction of fast and stable ionic and electronic transport paths in cathode is especially pivotal for cycle stability of solid-state Li-S batteries (SSLSBs). In this review, we provide research progresses on facilitating transport of charge carriers in composite cathode of SSLSBs. From perspective of materials, intrinsically conductivity of electrolyte and carbon shows dramatic effect on migration of charge carriers in cathode of SSLSBs, thereby the conductive additives are summarized in the manuscript. Additionally, the charge transport in cathode of SSLSBs fully depends on the physical contact between active materials and conductive additives, therefore we summarized the strategies optimizing interfacial contact and reducing interfacial resistance. Finally, potential future research directions and prospects for SSLSBs with improved energy density and cycle performance are also proposed.

Keywords: charge transport, composite cathode, sulfide electrolyte, solid-state lithium-sulfur battery

References(121)

[1]

Wang, L. L.; Chen, B. B.; Ma, J.; Cui, G. L.; Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602.

[2]

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

[3]

Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.

[4]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[5]

Wang, L. P.; Wu, Z. R.; Zou, J.; Gao, P.; Niu, X. B.; Li, H.; Chen, L. Q. Li-free cathode materials for high energy density lithium batteries. Joule 2019, 3, 2086–2102.

[6]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[7]

Chen, H.; Zhou, G. M.; Boyle, D.; Wan, J. Y.; Wang, H. X.; Lin, D. C.; Mackanic, D.; Zhang, Z. W.; Kim, S. C.; Lee, H. R. et al. Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium-sulfur battery. Matter 2020, 2, 1605–1620.

[8]

Pan, H. L.; Chen, J. Z.; Cao, R. G.; Murugesan, V.; Rajput, N. N.; Han, K. S.; Persson, K.; Estevez, L.; Engelhard, M. H.; Zhang, J. G. et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth. Nat. Energy 2017, 2, 813–820.

[9]

Seh, Z. W.; Yu, J. H.; Li, W. Y.; Hsu, P. C.; Wang, H. T.; Sun, Y. M.; Yao, H. B.; Zhang, Q. F.; Cui, Y. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 2014, 5, 5017.

[10]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[11]

Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

[12]

Nanda, S.; Bhargav, A.; Manthiram, A. Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition. Joule 2020, 4, 1121–1135.

[13]

Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.

[14]

Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.

[15]

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

[16]

Babu, G.; Ababtain, K.; Ng, K. Y. S.; Arava, L. M. R. Electrocatalysis of lithium polysulfides: Current collectors as electrodes in Li/S battery configuration. Sci. Rep. 2015, 5, 8763.

[17]

Fan, C. Y.; Zheng, Y. P.; Zhang, X. H.; Shi, Y. H.; Liu, S. Y.; Wang, H. C.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. High-performance and low-temperature lithium-sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638.

[18]

Fu, Y. S.; Wu, Z.; Yuan, Y. F.; Chen, P.; Yu, L.; Yuan, L.; Han, Q. R.; Lan, Y. J.; Bai, W. X.; Kan, E. J. et al. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nat. Commun. 2020, 11, 845.

[19]

Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.

[20]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[21]

Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1476–1486.

[22]

Lin, H. B.; Zhang, S. L.; Zhang, T. R.; Ye, H. L.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1902096.

[23]

Jin, Y.; Liu, K.; Lang, J. L.; Jiang, X.; Zheng, Z. K.; Su, Q. H.; Huang, Z. Y.; Long, Y. Z.; Wang, C. A.; Wu, H. et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 2020, 4, 262–274.

[24]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Mater. Energy 2018, 8, 1702657.

[25]

Xia, S. X.; Wu, X. S.; Zhang, Z. C.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753–785.

[26]

Cheng, X. B.; Zhao, C. Z.; Yao, Y. X.; Liu, H.; Zhang, Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 2019, 5, 74–96.

[27]

Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 2019, 18, 1278–1291.

[28]

Liu, M.; Zhou, D.; He, Y. B.; Fu, Y. Z.; Qin, X. Y.; Miao, C.; Du, H. D.; Li, B. H.; Yang, Q. H.; Lin, Z. Q. et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 2016, 22, 278–289.

[29]

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances andprospects. Chem 2019, 5, 2326–2352.

[30]

Fang, R. Y.; Xu, H. H.; Xu, B. Y.; Li, X. Y.; Li, Y. T.; Goodenough, J. B. Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Adv. Funct. Mater. 2021, 31, 2001812.

[31]

Lei, D. N.; Shi, K.; Ye, H.; Wan, Z. P.; Wang, Y. Y.; Shen, L.; Li, B. H.; Yang, Q. H.; Kang, F. Y.; He, Y. B. Progress and perspective of solid-state lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707570.

[32]

Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

[33]

Zhang, Z. Z.; Shao, Y. J.; Lotsch, B.; Hu, Y. S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C. W.; Maier, J.; Armand, M. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 2018, 11, 1945–1976.

[34]

Wang, C. H.; Liang, J. W.; Zhao, Y.; Zheng, M.; Li, X. N.; Sun, X. L. All-solid-state lithium batteries enabled by sulfide electrolytes: From fundamental research to practical engineering design. Energy Environ. Sci. 2021, 14, 2577–2619.

[35]

Chen, R. S.; Li, Q. H.; Yu, X. Q.; Chen, L. Q.; Li, H. Approaching practically accessible solid-state batteries: Stability issues related to solid electrolytes and interfaces. Chem. Rev. 2020, 120, 6820–6877.

[36]

Chen, R. J.; Qu, W. J.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516.

[37]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[38]

Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 2005, 17, 918–921.

[39]

Sahu, G.; Lin, Z.; Li, J. C.; Liu, Z. C.; Dudney, N.; Liang, C. D. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 2014, 7, 1053–1058.

[40]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[41]

Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew. Chem., Int. Ed. 2019, 58, 8681–8686.

[42]

Banik, A.; Liu, Y. S.; Ohno, S.; Rudel, Y.; Jiménez-Solano, A.; Gloskovskii, A.; Vargas-Barbosa, N. M.; Mo, Y. F.; Zeier, W. G. Can substitutions affect the oxidative stability of lithium argyrodite solid electrolytes? ACS Appl. Energy Mater. 2022, 5, 2045–2053.

[43]

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

[44]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417.

[45]

Wang, C. H.; Adair, K.; Sun, X. L. All-solid-state lithium metal batteries with sulfide electrolytes: Understanding interfacial ion and electron transport. Acc. Mater. Res. 2022, 3, 21–32.

[46]

Xu, R. C.; Wu, Z.; Zhang, S. Z.; Wang, X. L.; Xia, Y.; Xia, X. H.; Huang, X. H.; Tu, J. P. Construction of all-solid-state batteries based on a sulfur-graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte. Chem.—Eur. J. 2017, 23, 13950–13956.

[47]

Zhang, Q.; Huang, N.; Huang, Z.; Cai, L.; Wu, J. H.; Yao, X. Y. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life. J. Energy Chem. 2020, 40, 151–155.

[48]

Yao, X. Y.; Huang, N.; Han, F. D.; Zhang, Q.; Wan, H. L.; Mwizerwa, J. P.; Wang, C. S.; Xu, X. X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 2017, 7, 1602923.

[49]

Wu, Z. J.; Xie, Z. K.; Yoshida, A.; An, X. W.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Novel SeS2 doped Li2S–P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries. Chem. Eng. J. 2020, 380, 122419.

[50]

Xu, R. C.; Xia, X. H.; Li, S. H.; Zhang, S. Z.; Wang, X. L.; Tu, J. P. All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor. J. Mater. Chem. A 2017, 5, 6310–6317.

[51]

Sakuda, A.; Sato, Y.; Hayashi, A.; Tatsumisago, M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries. Energy Technol. 2019, 7, 1900077.

[52]

Suzuki, K.; Mashimo, N.; Ikeda, Y.; Yokoi, T.; Hirayama, M.; Kanno, R. High cycle capability of all-solid-state lithium-sulfur batteries using composite electrodes by liquid-phase and mechanical mixing. ACS Appl. Energy Mater. 2018, 1, 2373–2377.

[53]

Wang, S.; Zhang, Y. B.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L. L.; Nan, C. W. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 42279–42285.

[54]

Ando, T.; Sato, Y.; Matsuyama, T.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries. J. Ceram. Soc. Japan 2020, 128, 233–237.

[55]

Han, Q. G.; Li, X. L.; Shi, X. X.; Zhang, H. Z.; Song, D. W.; Ding, F.; Zhang, L. Q. Outstanding cycle stability and rate capabilities of the all-solid-state Li-S battery with a Li7P3S11 glass-ceramic electrolyte and a core–shell S@BP2000 nanocomposite. J. Mater. Chem. A 2019, 7, 3895–3902.

[56]

Zhang, W.; Zhang, Y. Y.; Peng, L. F.; Li, S. P.; Wang, X. M.; Cheng, S. J.; Xie, J. Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating. Nano Energy 2020, 76, 105083.

[57]

Xu, R. C.; Xia, X. H.; Wang, X. L.; Xia, Y.; Tu, J. P. Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 2829–2834.

[58]

Lin, Z.; Liu, Z. C.; Fu, W. J.; Dudney, N. J.; Liang, C. D. Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2013, 52, 7460–7463.

[59]

Tanibata, N.; Tsukasaki, H.; Deguchi, M.; Mori, S.; Hayashi, A.; Tatsumisago, M. A novel discharge–charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries. J. Mater. Chem. A 2017, 5, 11224–11228.

[60]

Xu, R. C.; Yue, J.; Liu, S. F.; Tu, J. P.; Han, F. D.; Liu, P.; Wang, C. S. Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density. ACS Energy Lett. 2019, 4, 1073–1079.

[61]

Phuc, N. H. H.; Takaki, M.; Kazuhiro, H.; Hiroyuki, M.; Atsunori, M. Dual effect of MgS addition on Li2S ionic conductivity and all-solid-state Li-S cell performance. SN Appl. Sci. 2020, 2, 1803.

[62]

Tufail, M. K.; Zhou, L.; Ahmad, N.; Chen, R. J.; Faheem, M.; Yang, L.; Yang, W. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem. Eng. J. 2021, 407, 127149.

[63]

Choi, S.; Yoon, I.; Nichols, W. T.; Shin, D. Carbon-coated Li2S cathode for improving the electrochemical properties of an all-solid-state lithium-sulfur battery using Li2S–P2S5 solid electrolyte. Ceram. Int. 2018, 44, 7450–7453.

[64]

Eom, M.; Son, S.; Park, C.; Noh, S.; Nichols, W. T.; Shin, D. High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite. Electrochim. Acta 2017, 230, 279–284.

[65]

Liu, M.; Wang, C.; Zhao, C. L.; van der Maas, E.; Lin, K.; Arszelewska, V. A.; Li, B. H.; Ganapathy, S.; Wagemaker, M. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. Nat. Commun. 2021, 12, 5943.

[66]

Ulissi, U.; Ito, S.; Hosseini, S. M.; Varzi, A.; Aihara, Y.; Passerini, S. High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites. Adv. Energy Mater. 2018, 8, 1801462.

[67]

Hosseini, S. M.; Varzi, A.; Ito, S.; Aihara, Y.; Passerini, S. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Mater. 2020, 27, 61–68.

[68]

Mwizerwa, J. P.; Zhang, Q.; Han, F. D.; Wan, H. L.; Cai, L. T.; Wang, C. S.; Yao, X. Y. Sulfur-embedded FeS2 as a high-performance cathode for room temperature all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 18519–18525.

[69]

Shi, J. M.; Liu, G. Z.; Weng, W.; Cai, L. T.; Zhang, Q.; Wu, J. H.; Xu, X. X.; Yao, X. Y. Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 14079–14086.

[70]

Zhang, Q.; Mwizerwa, J. P.; Wan, H. L.; Cai, L. T.; Xu, X. X.; Yao, X. Y. Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost. J. Mater. Chem. A 2017, 5, 23919–23925.

[71]

Zhang, Q.; Yao, X. Y.; Mwizerwa, J. P.; Huang, N.; Wan, H. L.; Huang, Z.; Xu, X. X. FeS nanosheets as positive electrodes for all-solid-state lithium batteries. Solid State Ionics 2018, 318, 60–64.

[72]

Zhang, Y. B.; Chen, R. J.; Liu, T.; Shen, Y.; Lin, Y. H.; Nan, C. W. High capacity, superior cyclic performances in all-solid-state lithium-ion batteries based on 78Li2S–22P2S5 glass-ceramic electrolytes prepared via simple heat treatment. ACS Appl. Mater. Interfaces 2017, 9, 28542–28548.

[73]

Wang, S.; Xu, X. F.; Zhang, X.; Xin, C. Z.; Xu, B. Q.; Li, L. L.; Lin, Y. H.; Shen, Y.; Li, B. H.; Nan, C. W. High-performance Li6PS5Cl-based all-solid-state lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18612–18618.

[74]

Yu, C.; Hageman, J.; Ganapathy, S.; van Eijck, L.; Zhang, L.; Adair, K. R.; Sun, X. L.; Wagemaker, M. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries. J. Mater. Chem. A 2019, 7, 10412–10421.

[75]

Han, F. D.; Gao, T.; Zhu, Y. J.; Gaskell, K. J.; Wang, C. S. A battery made from a single material. Adv. Mater. 2015, 27, 3473–3483.

[76]

Zhang, Y. B.; Chen, R. J.; Liu, T.; Xu, B. Q.; Zhang, X.; Li, L. L.; Lin, Y. H.; Nan, C. W.; Shen, Y. High capacity and superior cyclic performances of all-solid-state lithium batteries enabled by a glass-ceramics solo. ACS Appl. Mater. Interfaces 2018, 10, 10029–10035.

[77]

Hakari, T.; Nagao, M.; Hayashi, A.; Tatsumisago, M. All-solid-state lithium batteries with Li3PS4 glass as active material. J. Power Sources 2015, 293, 721–725.

[78]

Li, X. N.; Liang, J. W.; Luo, J.; Wang, C. H.; Li, X.; Sun, Q.; Li, R. Y.; Zhang, L.; Yang, R.; Lu, S. G. et al. High-performance Li-SeSx all-solid-state lithium batteries. Adv. Mater. 2019, 31, 1808100.

[79]

Santhosha, A. L.; Nayak, P. K.; Pollok, K.; Langenhorst, F.; Adelhelm, P. Exfoliated MoS2 as electrode for all-solid-state rechargeable lithium-ion batteries. J. Phys. Chem. C 2019, 123, 12126–12134.

[80]

Zhang, Q.; Ding, Z. G.; Liu, G. Z.; Wan, H. L.; Mwizerwa, J. P.; Wu, J. H.; Yao, X. Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2019, 23, 168–180.

[81]

Zhang, Q.; Wan, H. L.; Liu, G. Z.; Ding, Z. G.; Mwizerwa, J. P.; Yao, X. Y. Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 2019, 57, 771–782.

[82]

Cai, L. T.; Wan, H. L.; Zhang, Q.; Mwizerwa, J. P.; Xu, X. X.; Yao, X. Y. In situ coating of Li7P3S11 electrolyte on CuCo2S4/graphene nanocomposite as a high-performance cathode for all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 33810–33816.

[83]
Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In-situ embedding CoTe catalyst into 1D-2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982.
DOI
[84]

Zhou, C. Y.; Wang, J.; Zhu, X. B.; Chen, K.; Ouyang, Y.; Wu, Y.; Miao, Y. E.; Liu, T. X. A dual-functional poly(vinyl alcohol)/poly(lithium acrylate) composite nanofiber separator for ionic shielding of polysulfides enables high-rate and ultra-stable Li-S batteries. Nano Res. 2021, 14, 1541–1550.

[85]

Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

[86]

Yuan, H.; Huang, J. Q.; Peng, H. J.; Titirici, M. M.; Xiang, R.; Chen, R. J.; Liu, Q. B.; Zhang, Q. A review of functional binders in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802107.

[87]

Wang, L. L.; Ye, Y. S.; Chen, N.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800919.

[88]

Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.

[89]

Huang, X.; Liu, C.; Lu, Y.; Xiu, T.; Jin, J.; Badding, M. E.; Wen, Z. Y. A Li-garnet composite ceramic electrolyte and its solid-state Li-S battery. J. Power Sources 2018, 382, 190–197.

[90]

Hao, X. G.; Ma, J. B.; Cheng, X.; Zhong, G. M.; Yang, J. L.; Huang, L.; Ling, H. J.; Lai, C.; Lv, W.; Kang, F. Y. et al. Electron and ion co-conductive catalyst achieving instant transformation of lithium polysulfide towards Li2S. Adv. Mater. 2021, 33, 2105362.

[91]

Kinoshita, S.; Okuda, K.; Machida, N.; Naito, M.; Sigematsu, T. All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials. Solid State Ionics 2014, 256, 97–102.

[92]

Nagao, M.; Hayashi, A.; Tatsumisago, M. Electrochemical performance of all-solid-state Li/S batteries with sulfur-based composite electrodes prepared by mechanical milling at high temperature. Energy Technol. 2013, 1, 186–192.

[93]

Zhang, Y. B.; Liu, T.; Zhang, Q. H.; Zhang, X.; Wang, S.; Wang, X. Z.; Li, L. L.; Fan, L. Z.; Nan, C. W.; Shen, Y. High-performance all-solid-state lithium-sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode. J. Mater. Chem. A 2018, 6, 23345–23356.

[94]

Nagao, M.; Suzuki, K.; Imade, Y.; Tateishi, M.; Watanabe, R.; Yokoi, T.; Hirayama, M.; Tatsumi, T.; Kanno, R. All-solid-state lithium-sulfur batteries with three-dimensional mesoporous electrode structures. J. Power Sources 2016, 330, 120–126.

[95]

Dewald, G. F.; Ohno, S.; Hering, J. G. C.; Janek, J.; Zeier, W. G. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li-S batteries. Batteries Supercaps 2021, 4, 183–194.

[96]

Xu, S. Q.; Kwok, C. Y.; Zhou, L. D.; Zhang, Z. Z.; Kochetkov, I.; Nazar, L. F. A High capacity all solid-state Li-sulfur battery enabled by conversion–intercalation hybrid cathode architecture. Adv. Funct. Mater. 2021, 31, 2004239.

[97]

Li, M. Y.; Liu, T.; Shi, Z.; Xue, W. J.; Hu, Y. S.; Li, H.; Huang, X. J.; Li, J.; Suo, L. M.; Chen, L. Q. Dense all-electrochem-active electrodes for all-solid-state lithium batteries. Adv. Mater. 2021, 33, 2008723.

[98]

Nagao, M.; Hayashi, A.; Tatsumisago, M.; Ichinose, T.; Ozaki, T.; Togawa, Y.; Mori, S. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries. J. Power Sources 2015, 274, 471–476.

[99]

Yan, H. F.; Wang, H. C.; Wang, D. H.; Li, X.; Gong, Z. L.; Yang, Y. In situ generated Li2S-C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 2019, 19, 3280–3287.

[100]

Lin, Z.; Liu, Z. C.; Dudney, N. J.; Liang, C. D. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 2013, 7, 2829–2833.

[101]

Jiang, H. Z.; Han, Y.; Wang, H.; Guo, Q. P.; Zhu, Y. H.; Xie, W.; Zheng, C. M.; Xie, K. In situ generated Li2S-LPS composite for all-solid-state lithium-sulfur battery. Ionics 2020, 26, 2335–2342.

[102]

Han, F. D.; Yue, J.; Fan, X. L.; Gao, T.; Luo, C.; Ma, Z. H.; Suo, L. M.; Wang, C. S. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S Nanocomposite. Nano Lett. 2016, 16, 4521–4527.

[103]

Xu, X. Y.; Cheng, J.; Li, Y. Y.; Nie, X. K.; Dai, L. N.; Ci, L. Li metal-free rechargeable all-solid-state Li2S/Si battery based on Li7P3S11 electrolyte. J. Solid State Electrochem. 2019, 23, 3145–3151.

[104]

Wan, H. L.; Cai, L. T.; Han, F. D.; Mwizerwa, J. P.; Wang, C. S.; Yao, X. Y. Construction of 3D electronic/ionic conduction networks for all-solid-state lithium batteries. Small 2019, 15, 1905849.

[105]

Santhosha, A. L.; Nazer, N.; Koerver, R.; Randau, S.; Richter, F. H.; Weber, D. A.; Kulisch, J.; Adermann, T.; Janek, J.; Adelhelm, P. Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries. Adv. Energy Mater. 2020, 10, 2002394.

[106]

Hayashi, A.; Ohtomo, T.; Mizuno, F.; Tadanaga, K.; Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem. Commun. 2003, 5, 701–705.

[107]

Yao, X. Y.; Liu, D.; Wang, C. S.; Long, P.; Peng, G.; Hu, Y. S.; Li, H.; Chen, L. Q.; Xu, X. X. High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett. 2016, 16, 7148–7154.

[108]

Wan, H. L.; Peng, G.; Yao, X. Y.; Yang, J.; Cui, P.; Xu, X. X. Cu2ZnSnS4/graphene nanocomposites for ultrafast, long life all-solid-state lithium batteries using lithium metal anode. Energy Storage Mater. 2016, 4, 59–65.

[109]

Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. J. Power Sources 2018, 374, 107–112.

[110]

Wan, H. L.; Zhang, B.; Liu, S. F.; Zhang, J. X.; Yao, X. Y.; Wang, C. S. Understanding LiI–LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery. Nano Lett. 2021, 21, 8488–8494.

[111]

Matsumura, T.; Nakano, K.; Kanno, R.; Hirano, A.; Imanishi, N.; Takeda, Y. Nickel sulfides as a cathode for all-solid-state ceramic lithium batteries. J. Power Sources 2007, 174, 632–636.

[112]

Aso, K.; Kitaura, H.; Hayashi, A.; Tatsumisago, M. Synthesis of nanosized nickel sulfide in high-boiling solvent for all-solid-state lithium secondary batteries. J. Mater. Chem. 2011, 21, 2987–2990.

[113]

Aso, K.; Hayashi, A.; Tatsumisago, M. Synthesis of NiS-carbon fiber composites in high-boiling solvent to improve electrochemical performance in all-solid-state lithium secondary batteries. Electrochim. Acta 2012, 83, 448–453.

[114]

Zhang, Q.; Peng, G.; Mwizerwa, J. P.; Wan, H. L.; Cai, L. T.; Xu, X. X.; Yao, X. Y. Nickel sulfide anchored carbon nanotubes for all-solid-state lithium batteries with enhanced rate capability and cycling stability. J. Mater. Chem. A 2018, 6, 12098–12105.

[115]

Trevey, J. E.; Stoldt, C. R.; Lee, S. H. High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 2011, 158, A1282.

[116]

Cai, L. T.; Zhang, Q.; Mwizerwa, J. P.; Wan, H. L.; Yang, X. L.; Xu, X. X.; Yao, X. Y. Highly crystalline layered VS2 nanosheets for all-solid-state lithium batteries with enhanced electrochemical performances. ACS Appl. Mater. Interfaces 2018, 10, 10053–10063.

[117]

Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 2016, 28, 266–273.

[118]

Koerver, R.; Walther, F.; Aygün, I.; Sann, J.; Dietrich, C.; Zeier, W. G.; Janek, J. Redox-active cathode interphases in solid-state batteries. J. Mater. Chem. A 2017, 5, 22750–22760.

[119]

Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 2019, 4, 2418–2427.

[120]

Dewald, G. F.; Ohno, S.; Kraft, M. A.; Koerver, R.; Till, P.; Vargas-Barbosa, N. M.; Janek, J.; Zeier, W. G. Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater. 2019, 31, 8328–8337.

[121]

Wang, S.; Tang, M. X.; Zhang, Q. H.; Li, B. H.; Ohno, S.; Walther, F.; Pan, R. J.; Xu, X. F.; Xin, C. Z.; Zhang, W. B. et al. Lithium argyrodite as solid electrolyte and cathode precursor for solid-state batteries with long cycle life. Adv. Energy Mater. 2021, 11, 2101370.

File
5291_ESM.pdf (31.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 August 2022
Revised: 03 November 2022
Accepted: 06 November 2022
Published: 10 January 2023
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Key Scientific and Technological Innovation Project of Shandong (No. 2020CXGC010401), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA22010602), the National Natural Science Foundation of China (Nos. 52203150 and 52037006), CAS Key Technology Talent Program, Key Research and Development Plan of Shandong Province (No. 2019GHZ009), Qingdao Key Laboratory of Solar Energy Utilization and Energy Storage Technology, and the Public Projects of Zhejiang Province (No. LGG19E020001).

Return