Journal Home > Volume 16 , Issue 5

Chiral metal nanoclusters (MNCs) are competitive candidates for fabricating circularly polarized light-emitting diodes (CPLEDs), but the device performance is greatly limited by the poor emission of MNCs in solid thin films. Herein, host molecule enhanced aggregation induced emission (AIE) of MNCs is demonstrated for fabricating highly efficient CPLEDs. Namely, on the basis of the AIE effect of atomically precise enantiomeric (R/S)-4-phenylthiazolidine-2-thione capped silver (R/S-Ag6(PTLT)6) NCs in solid thin films, 1,3-bis(carbazol-9-yl) benzene (mCP) is introduced as a host molecule to control the orientation and packing arrangements of R/S-Ag6(PTLT)6 NCs through π–π interactions with the R/S-Ag6(PTLT)6 NCs and further enhance the AIE. The as-fabricated Ag6(PTLT)6 NC/mCP hybrid solid thin film shows a high photoluminescence quantum yield of 71.0% close to that of Ag6(PTLT)6 NC single crystal. As the hybrid films are employed as the active emission layers of CPLEDs, mCP also suppresses the triplet-triplet annihilation and balances the charge transport. Thus, the CPLEDs exhibit a maximum brightness of 3,906 cd/m2, peak external quantum efficiency of 10.0%, and electroluminescence dissymmetry factors of −5.3 × 10−3 and 4.7 × 10−3.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Host molecule enhanced aggregation induced emission of chiral silver nanoclusters for achieving highly efficient circularly polarized electroluminescence

Show Author's information Ye Tian1,§Shuhe Hu2,§Xiaoyu Zhang3Hang Gao1Yanwei Xiao1Yinghui Wang2Dong Yao1( )Hao Zhang1,4( )
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
College of Physics, Jilin University, Changchun 130012, China
School of Materials Science & Engineering, Jilin University, Changchun 130012, China
Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§ Ye Tian and Shuhe Hu contributed equally to this work.

Abstract

Chiral metal nanoclusters (MNCs) are competitive candidates for fabricating circularly polarized light-emitting diodes (CPLEDs), but the device performance is greatly limited by the poor emission of MNCs in solid thin films. Herein, host molecule enhanced aggregation induced emission (AIE) of MNCs is demonstrated for fabricating highly efficient CPLEDs. Namely, on the basis of the AIE effect of atomically precise enantiomeric (R/S)-4-phenylthiazolidine-2-thione capped silver (R/S-Ag6(PTLT)6) NCs in solid thin films, 1,3-bis(carbazol-9-yl) benzene (mCP) is introduced as a host molecule to control the orientation and packing arrangements of R/S-Ag6(PTLT)6 NCs through π–π interactions with the R/S-Ag6(PTLT)6 NCs and further enhance the AIE. The as-fabricated Ag6(PTLT)6 NC/mCP hybrid solid thin film shows a high photoluminescence quantum yield of 71.0% close to that of Ag6(PTLT)6 NC single crystal. As the hybrid films are employed as the active emission layers of CPLEDs, mCP also suppresses the triplet-triplet annihilation and balances the charge transport. Thus, the CPLEDs exhibit a maximum brightness of 3,906 cd/m2, peak external quantum efficiency of 10.0%, and electroluminescence dissymmetry factors of −5.3 × 10−3 and 4.7 × 10−3.

Keywords: electroluminescence, circularly polarized luminescence, silver nanocluster, aggregation induced emission, circularly polarized light emitting devices

References(74)

[1]

Zhan, X. Q.; Xu, F. F.; Zhou, Z. H.; Yan, Y. L.; Yao, J. N.; Zhao, Y. S. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater. 2021, 33, 2104418.

[2]

Sherson, J. F.; Krauter, H.; Olsson, R. K.; Julsgaard, B.; Hammerer, K.; Cirac, I.; Polzik, E. S. Quantum teleportation between light and matter. Nature 2006, 443, 557–560.

[3]

Yang, Y.; da Costa, R. C.; Fuchter, M. J.; Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 2013, 7, 634–638.

[4]

Wang, X. B.; Wang, Y.; Gao, W. Y.; Song, L.; Ran, C. X.; Chen, Y. H.; Huang, W. Polarization-sensitive halide perovskites for polarized luminescence and detection: Recent advances and perspectives. Adv. Mater. 2021, 33, 2003615.

[5]

Sang, Y. T.; Han, J. L.; Zhao, T. H.; Duan, P. F.; Liu, M. H. Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater. 2020, 32, 1900110.

[6]

Yang, Y.; da Costa, R. C.; Smilgies, D. M.; Campbell, A. J.; Fuchter, M. J. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater. 2013, 25, 2624–2628.

[7]

Han, D. X.; Li, C. X.; Jiang, C. Y.; Jin, X.; Wang, X. B.; Chen, R.; Cheng, J. J.; Duan, P. F. Endowing inorganic nanomaterials with circularly polarized luminescence. Aggregate 2022, 3, e148.

[8]

Zhang, C.; Li, S.; Dong, X. Y.; Zang, S. Q. Circularly polarized luminescence of agglomerate emitters. Aggregate 2021, 2, e48.

[9]

Han, J. M.; Guo, S.; Lu, H.; Liu, S. J.; Zhao, Q.; Huang, W. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater. 2018, 6, 1800538.

[10]

Zhang, D. W.; Li, M.; Chen, C. F. Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331–1343.

[11]

Lee, H. E.; Ahn, H. Y.; Mun, J.; Lee, Y. Y.; Kim, M.; Cho, N. H.; Chang, K.; Kim, W. S.; Rho, J.; Nam, K. T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365.

[12]

Liu, M. H.; Zhang, L.; Wang, T. Y. Supramolecular chirality in self-assembled systems. Chem. Rev. 2015, 115, 7304–7397.

[13]

Richardson, R. D.; Baud, M. G. J.; Weston, C. E.; Rzepa, H. S.; Kuimova, M. K.; Fuchter, M. J. Dual wavelength asymmetric photochemical synthesis with circularly polarized light. Chem. Sci. 2015, 6, 3853–3862.

[14]

Konishi, K.; Nomura, M.; Kumagai, N.; Iwamoto, S.; Arakawa, Y.; Kuwata-Gonokami, M. Circularly polarized light emission from semiconductor planar chiral nanostructures. Phys. Rev. Lett. 2011, 106, 057402.

[15]

Ru, Y.; Sui, L. Z.; Song, H. Q.; Liu, X. J.; Tang, Z. Y.; Zang, S. Q.; Yang, B.; Lu, S. Y. Rational design of multicolor-emitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence. Angew. Chem., Int. Ed. 2021, 60, 14091–14099.

[16]

Tohgha, U.; Deol, K. K.; Porter, A. G.; Bartko, S. G.; Choi, J. K.; Leonard, B. M.; Varga, K.; Kubelka, J.; Muller, G.; Balaz, M. Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano 2013, 7, 11094–11102.

[17]

Xu, M. C.; Wu, X. Y.; Yang, Y.; Ma, C. H.; Li, W.; Yu, H. P.; Chen, Z. J.; Li, J.; Zhang, K.; Liu, S. X. Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence. ACS Nano 2020, 14, 11130–11139.

[18]

Liu, J. Z.; Su, H. M.; Meng, L. M.; Zhao, Y. H.; Deng, C. M.; Ng, J. C. Y.; Lu, P.; Faisal, M.; Lam, J. W. Y.; Huang, X. H. et al. What makes efficient circularly polarised luminescence in the condensed phase: Aggregation-induced circular dichroism and light emission. Chem. Sci. 2012, 3, 2737–2747.

[19]

Zhao, J.; Zhang, T. J.; Dong, X. Y.; Sun, M. E.; Zhang, C.; Li, X. L.; Zhao, Y. S.; Zang, S. Q. Circularly polarized luminescence from achiral single crystals of hybrid manganese halides. J. Am. Chem. Soc. 2019, 141, 15755–15760.

[20]

Li, M.; Li, S. H.; Zhang, D. D.; Cai, M. H.; Duan, L.; Fung, M. K.; Chen, C. F. Stable enantiomers displaying thermally activated delayed fluorescence: Efficient OLEDs with circularly polarized electroluminescence. Angew. Chem., Int. Ed. 2018, 57, 2889–2893.

[21]

Wan, L.; Wade, J.; Shi, X. Y.; Xu, S. D.; Fuchter, M. J.; Campbell, A. J. Highly efficient inverted circularly polarized organic light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 39471–39478.

[22]

Song, F. Y.; Xu, Z.; Zhang, Q. S.; Zhao, Z.; Zhang, H. K.; Zhao, W. J.; Qiu, Z. J.; Qi, C. X.; Zhang, H.; Sung, H. H. Y. et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv. Funct. Mater. 2018, 28, 1800051.

[23]

Qian, G. W.; Yang, X. F.; Wang, X. B.; Herod, J. D.; Bruce, D. W.; Wang, S. Y.; Zhu, W. G.; Duan, P. F.; Wang, Y. F. Chiral platinum-based metallomesogens with highly efficient circularly polarized electroluminescence in solution-processed organic light-emitting diodes. Adv. Opt. Mater. 2020, 8, 2000775.

[24]

Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.

[25]

Wen, H. J.; Song, S. C.; Xie, F.; Wang, B.; Xu, J.; Feng, Z. W.; Wu, S. Y.; Han, J.; Guan, B. O.; Xu, X. X. et al. Great chiral fluorescence from the optical duality of silver nanostructures enabled by 3D laser printing. Mater. Horiz. 2020, 7, 3201–3208.

[26]

Zhang, C.; Yan, Z. P.; Dong, X. Y.; Han, Z.; Li, S.; Fu, T.; Zhu, Y. Y.; Zheng, Y. X.; Niu, Y. Y.; Zang, S. Q. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater. 2020, 32, 2002914.

[27]

Zeng, C. J.; Jin, R. C. Chiral gold nanoclusters: Atomic level origins of chirality. Chem. Asian J. 2017, 12, 1839–1850.

[28]

Ma, W.; Kuang, H.; Xu, L. G.; Ding, L.; Xu, C. L.; Wang, L. B.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.

[29]

Zhang, M. M.; Li, K.; Zang, S. Q. Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence. Adv. Opt. Mater. 2020, 8, 1902152.

[30]

Dolamic, I.; Knoppe, S.; Dass, A.; Bürgi, T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 2012, 3, 798.

[31]

Yanagimoto, Y.; Negishi, Y.; Fujihara, H.; Tsukuda, T. Chiroptical activity of BINAP-stabilized undecagold clusters. J. Phys. Chem. B 2006, 110, 11611–11614.

[32]

Huang, J. H.; Si, Y. B.; Dong, X. Y.; Wang, Z. Y.; Liu, L. Y.; Zang, S. Q.; Mak, T. C. W. Symmetry breaking of atomically precise fullerene-like metal nanoclusters. J. Am. Chem. Soc. 2021, 143, 12439–12444.

[33]

Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Luo, X. M.; Huang, J. H.; Zang, S. Q.; Mak, T. C. W. Alkynyl-stabilized superatomic silver clusters showing circularly polarized luminescence. J. Am. Chem. Soc. 2021, 143, 6048–6053.

[34]

Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold: Glutathione cluster compound. J. Phys. Chem. B 1998, 102, 10643–10646.

[35]

Li, B.; Kong, Y. J.; Li, S.; Liu, X. F.; Luo, P.; Zang, S. Q. Synthesis of atom-precise chiral Ag14 clusters protected by penicillamine ligands. Part. Part. Syst. Charact. 2019, 36, 1900069.

[36]

Yang, Y.; Pei, X. L.; Wang, Q. M. Postclustering dynamic covalent modification for chirality control and chiral sensing. J. Am. Chem. Soc. 2013, 135, 16184–16191.

[37]

Xie, M. C.; Han, C. M.; Zhang, J.; Xie, G. H.; Xu, H. White electroluminescent phosphine-chelated copper iodide nanoclusters. Chem. Mater. 2017, 29, 6606–6610.

[38]

Xie, M. C.; Han, C. M.; Liang, Q. Q.; Zhang, J.; Xie, G. H.; Xu, H. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters: Overcoming the limitations of cluster light-emitting diodes. Sci. Adv. 2019, 5, eaav9857.

[39]

Wang, J. J.; Zhou, H. T.; Yang, J. N.; Feng, L. Z.; Yao, J. S.; Song, K. H.; Zhou, M. M.; Jin, S.; Zhang, G. Z.; Yao, H. B. Chiral phosphine–copper iodide hybrid cluster assemblies for circularly polarized luminescence. J. Am. Chem. Soc. 2021, 143, 10860–10864.

[40]

Dong, Y. Q.; Lam, J. W. Y.; Qin, A. J.; Li, Z.; Sun, J. Z.; Sung, H. H. Y.; Williams, I. D.; Tang, B. Z. Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: Crystallization-induced emission enhancement. Chem. Commun. 2007, 40–42.

[41]

Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.

[42]

Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B. et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741.

[43]

Liu, Y. Y.; Li, Y. Y.; Luo, X. M.; Luo, P.; Han, Z.; Peng, Q. C.; Li, K.; Hou, H. W.; Zang, S. Q. AIE ligand-based silver clusters used for ethion detection. Mater. Chem. Front. 2021, 5, 7982–7986.

[44]

Wu, X. H.; Luo, P.; Wei, Z.; Li, Y. Y.; Huang, R. W.; Dong, X. Y.; Li, K.; Zang, S. Q.; Tang, B. Z. Guest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworks. Adv. Sci. 2019, 6, 1801304.

[45]

Dou, X. Y.; Yuan, X.; Yu, Y.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Xie, J. P. Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157–161.

[46]

Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Li, H. Y.; Li, S. J.; Zhao, X. L.; Zang, S. Q. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem., Int. Ed. 2020, 59, 10052–10058.

[47]

Shi, Y. E.; Ma, J. Z.; Feng, A. R.; Wang, Z. G.; Rogach, A. L. Aggregation-induced emission of copper nanoclusters. Aggregate 2021, 2, e112.

[48]

Wang, Z. G.; Shi, Y. E.; Yang, X. M.; Xiong, Y.; Li, Y. X.; Chen, B. K.; Lai, W. F.; Rogach, A. L. Water-soluble biocompatible copolymer hypromellose grafted chitosan able to load exogenous agents and copper nanoclusters with aggregation-induced emission. Adv. Funct. Mater. 2018, 28, 1802848.

[49]

Wang, Z. G.; Chen, R.; Xiong, Y.; Cepe, K.; Schneider, J.; Zboril, R.; Lee, C. S.; Rogach, A. L. Incorporating copper nanoclusters into metal-organic frameworks: Confinement-assisted emission enhancement and application for trinitrotoluene detection. Part. Part. Syst. Charact. 2017, 34, 1700029.

[50]

Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core–shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.

[51]

Chen, T.; Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Rao, B.; Sheng, H. T.; Yu, H. Z.; Zhu, M. Z. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 2017, 3, e1700956.

[52]

Li, S.; Dong, X. Y.; Qi, K. S.; Zang, S. Q.; Mak, T. C. W. Full-color tunable circularly polarized luminescence induced by the crystal defect from the co-assembly of chiral silver(I) clusters and dyes. J. Am. Chem. Soc. 2021, 143, 20574–20578.

[53]

Han, Z.; Zhao, X. L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z. Y.; Zang, S. Q. Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters. Nano Res. 2020, 13, 3248–3252.

[54]

Han, Z.; Dong, X. Y.; Luo, P.; Li, S.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.

[55]

Nematulloev, S.; Huang, R. W.; Yin, J.; Shkurenko, A.; Dong, C. W.; Ghosh, A.; Alamer, B.; Naphade, R.; Hedhili, M. N.; Maity, P. et al. [Cu15(PPh3)6(Pet)13]2+: A copper nanocluster with crystallization enhanced photoluminescence. Small 2021, 17, 2006839.

[56]

Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91, 146401.

[57]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[58]

Li, Y. S.; Shao, A. D.; Wang, Y.; Mei, J.; Niu, D. C.; Gu, J. L.; Shi, P.; Zhu, W. H.; Tian, H.; Shi, J. L. Morphology-tailoring of a red aiegen from microsized rods to nanospheres for tumor-targeted bioimaging. Adv. Mater. 2016, 28, 3187–3193.

[59]

He, T.; Niu, N.; Chen, Z. J.; Li, S. J.; Liu, S. X.; Li, J. Novel quercetin aggregation-induced emission luminogen (AIEgen) with excited-state intramolecular proton transfer for in vivo bioimaging. Adv. Funct. Mater. 2018, 28, 1706196.

[60]

Ni, W. X.; Qiu, Y. M.; Li, M.; Zheng, J.; Sun, R. W. Y.; Zhan, S. Z.; Ng, S. W.; Li, D. Metallophilicity-driven dynamic aggregation of a phosphorescent gold(I)-silver(I) cluster prepared by solution-based and mechanochemical approaches. J. Am. Chem. Soc. 2014, 136, 9532–9535.

[61]

Yang, X. L.; Guo, H. R.; Xu, X. B.; Sun, Y. H.; Zhou, G. J.; Ma, W.; Wu, Z. X. Enhancing molecular aggregations by intermolecular hydrogen bonds to develop phosphorescent emitters for high-performance near-infrared OLEDs. Adv. Sci. 2019, 6, 1801930.

[62]

Yook, K. S.; Lee, J. Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes. Adv. Mater. 2014, 26, 4218–4233.

[63]

Li, H. H.; Wang, Y. Z.; Yu, L.; Liu, C.; Zhou, C. F.; Sun, S. B.; Li, M. G.; Tao, Y.; Xie, G. Z.; Xu, H. et al. V-shaped triazine host featuring intramolecular non-covalent interaction for highly efficient white electroluminescent devices. Chem. Eng. J. 2021, 425, 131487.

[64]

Yuan, C. Q.; Levin, A.; Chen, W.; Xing, R. R.; Zou, Q. L.; Herling, T. W.; Challa, P. K.; Knowles, T. P. J.; Yan, X. H. Nucleation and growth of amino acid and peptide supramolecular polymers through liquid–liquid phase separation. Angew. Chem., Int. Ed. 2019, 58, 18116–18123.

[65]

Yao, M. G.; Cui, W.; Du, M. R.; Xiao, J. P.; Yang, X. G.; Liu, S. J.; Liu, R.; Wang, F.; Cui, T.; Sundqvist, B. et al. Tailoring building blocks and their boundary interaction for the creation of new, potentially superhard, carbon materials. Adv. Mater. 2015, 27, 3962–3968.

[66]

Xie, Y. P.; Shen, Y. L.; Duan, G. X.; Han, J.; Zhang, L. P.; Lu, X. Silver nanoclusters: Synthesis, structures and photoluminescence. Mater. Chem. Front. 2020, 4, 2205–2222.

[67]

Tao, Y. T.; Yang, C. L.; Qin, J. G. Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40, 2943–2970.

[68]

Li, M.; Wang, Y. F.; Zhang, D. D.; Duan, L.; Chen, C. F. Axially chiral TADF-active enantiomers designed for efficient blue circularly polarized electroluminescence. Angew. Chem., Int. Ed. 2020, 59, 3500–3504.

[69]

Brandt, J. R.; Wang, X. H.; Yang, Y.; Campbell, A. J.; Fuchter, M. J. Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from PHOLEDs based on a platinahelicene. J. Am. Chem. Soc. 2016, 138, 9743–9746.

[70]

Zhang, N.; Hu, H.; Qu, L.; Huo, R.; Zhang, J.; Duan, C. B.; Meng, Y. S.; Han, C. M.; Xu, H. Overcoming efficiency limitation of cluster light-emitting diodes with asymmetrically functionalized biphosphine Cu4I4 cubes. J. Am. Chem. Soc. 2022, 144, 6551–6557.

[71]

Huang, Y. Z.; Shi, L. X.; Wang, J. Y.; Su, H. F.; Chen, Z. N. Elaborate design of Ag8Au10 cluster [2]catenane phosphors for high-efficiency light-emitting devices. ACS Appl. Mater. Interfaces 2020, 12, 57264–57270.

[72]

Xu, L. J.; Wang, J. Y.; Zhu, X. F.; Zeng, X. C.; Chen, Z. N. Phosphorescent cationic Au4Ag2 alkynyl cluster complexes for efficient solution-processed organic light-emitting diodes. Adv. Funct. Mater. 2015, 25, 3033–3042.

[73]

Jiao, Z.; Yang, M.; Wang, J. Y.; Huang, Y. Z.; Xie, P.; Chen, Z. N. High-efficiency solution-processed light-emitting diode based on a phosphorescent Ag3Cu5 cluster complex. J. Mater. Chem. C 2021, 9, 5528–5534.

[74]

Xu, L. J.; Zhang, X.; Wang, J. Y.; Chen, Z. N. High-efficiency solution-processed OLEDs based on cationic Ag6Cu heteroheptanuclear cluster complexes with aromatic acetylides. J. Mater. Chem. C 2016, 4, 1787–1794.

File
12274_2022_5285_MOESM1_ESM.pdf (9.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2022
Revised: 31 October 2022
Accepted: 02 November 2022
Published: 19 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was made possible as a result of a generous grant from the National Natural Science Foundation of China (Nos. 21902057 and 21773088), the China Postdoctoral Science Foundation (No. 2021M691201), the Interdisciplinary Scientific Research Team Project of Jilin University (No. 419021420367), and the Special Project from MOST of China. The authors would thank Miss Wei Xin for desigining the artwork in this article.

Return