Journal Home > Volume 16 , Issue 5

Actual chemical states of single-atom metal on reducible supports remain a fiercely debated topic under reactive environments. Herein, we demonstrate that the single-atom Pt on Co3O4 surface undergoes an in-situ reconstruction to form isolated Pt-Co bimetallic sites via reducing coordination number of Pt–O in the presence of hydrogen from both simulations and in-situ X-ray photoelectron spectroscopy. The modified chemical states of Pt greatly promoted H2 activation, thus delivering a significantly high turnover frequency of 7,448 h−1 (19.5 times over Pt nanoparticles on Co3O4) for hydrogenation of cinnamaldehyde. The satisfactory selectivity of 95.2% towards cinnamyl alcohol was ascribed to a tilted adsorption configuration of reactant on the catalyst surface via aldehyde group. We anticipate that the recognitions on in-situ reconstruction of single-atom catalysts (SACs) under the reducing conditions benefit the design of highly-performed hydrogenation catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ reconstruction of single-atom Pt on Co3O4 for hydrogenation

Show Author's information Sai Zhang1,2( )Zhaoming Xia3( )Wenbin Li1You Wang1Yong Zou1Mingkai Zhang1Zhongmiao Gong4Yi Cui4Yongquan Qu1( )
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Abstract

Actual chemical states of single-atom metal on reducible supports remain a fiercely debated topic under reactive environments. Herein, we demonstrate that the single-atom Pt on Co3O4 surface undergoes an in-situ reconstruction to form isolated Pt-Co bimetallic sites via reducing coordination number of Pt–O in the presence of hydrogen from both simulations and in-situ X-ray photoelectron spectroscopy. The modified chemical states of Pt greatly promoted H2 activation, thus delivering a significantly high turnover frequency of 7,448 h−1 (19.5 times over Pt nanoparticles on Co3O4) for hydrogenation of cinnamaldehyde. The satisfactory selectivity of 95.2% towards cinnamyl alcohol was ascribed to a tilted adsorption configuration of reactant on the catalyst surface via aldehyde group. We anticipate that the recognitions on in-situ reconstruction of single-atom catalysts (SACs) under the reducing conditions benefit the design of highly-performed hydrogenation catalysts.

Keywords: coordination environment, hydrogenation, single-atom catalysis (SACs), Pt-Co bimetallic sites

References(37)

[1]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[2]

Kaiser, S. K.; Chen, Z. P.; Faust Akl, D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

[3]

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

[4]

Li, X. N.; Huang, Y. Q.; Liu, B. Catalyst: Single-atom catalysis: Directing the way toward the nature of catalysis. Chem 2019, 5, 2733–2735.

[5]

Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

[6]

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

[7]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[8]

Liu, J. C.; Tang, Y.; Wang, Y. G.; Zhang, T.; Li, J. Theoretical understanding of the stability of single-atom catalysts. Natl. Sci. Rev. 2018, 5, 638–641.

[9]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[10]

Qi, K.; Chhowalla, M.; Voiry, D. Single atom is not alone: Metal–support interactions in single-atom catalysis. Mater. Today 2020, 40, 173–192.

[11]

Wang, X.; Zhang, Y. W.; Wu, J.; Zhang, Z.; Liao, Q. L.; Kang, Z.; Zhang, Y. Single-atom engineering to ignite 2D transition metal dichalcogenide based catalysis: Fundamentals, progress, and beyond. Chem. Rev. 2022, 122, 1273–1348.

[12]

Boyes, E. D.; LaGrow, A. P.; Ward, M. R.; Mitchell, R. W.; Gai, P. L. Single atom dynamics in chemical reactions. Acc. Chem. Res. 2020, 53, 390–399.

[13]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[14]

Samantaray, M. K.; D'Elia, V.; Pump, E.; Falivene, L.; Harb, M.; Ould Chikh, S.; Cavallo, L.; Basset, J. M. The comparison between single atom catalysis and surface organometallic catalysis. Chem. Rev. 2020, 120, 734–813.

[15]

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

[16]

Zhang, X.; Zhang, M. T.; Deng, Y. C.; Xu, M. Q.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B. B.; Yao, S. Y.; Zhang, X. C. et al. A stable low-temperature H2-production catalyst by crowding Pt on α-MoC. Nature 2021, 589, 396–401.

[17]

Su, C.; Tripathi, M.; Yan, Q. B.; Wang, Z. G.; Zhang, Z. H.; Hofer, C.; Wang, H. Z.; Basile, L.; Su, G.; Dong, M. D. et al. Engineering single-atom dynamics withelectron irradiation. Sci. Adv. 2019, 5, eaav2252.

[18]

Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215–1221.

[19]

Nie, L.; Mei, D. H.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[20]

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Sheng Su, D.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure–performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

[21]

Liu, J.; Bak, J.; Roh, J.; Lee, K. S.; Cho, A.; Han, J. W.; Cho, E. Reconstructing the coordination environment of platinum single-atom active sites for boosting oxygen reduction reaction. ACS Catal. 2021, 11, 466–475.

[22]

Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

[23]

Xiao, G. F.; Lu, R. H.; Liu, J. F.; Liao, X. B.; Wang, Z. Y.; Zhao, Y. Coordination environments tune the activity of oxygen catalysis on single atom catalysts: A computational study. Nano Res. 2022, 15, 3073–3081.

[24]

Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

[25]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[26]

Zhou, X. M.; Xia, Z. M.; Tian, Z.; Ma, Y. Y.; Qu, Y. Q. Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts. J. Mater. Chem. A 2015, 3, 8107–8114.

[27]

Fickenscher, G.; Hohner, C.; Xu, T.; Libuda, J. Adsorption of D2O and CO on Co3O4(111): Water stabilizes coadsorbed CO. J. Phys. Chem. C 2021, 125, 26785–26792.

[28]

Ferstl, P.; Mehl, S.; Arman, M. A.; Schuler, M.; Toghan, A.; Laszlo, B.; Lykhach, Y.; Brummel, O.; Lundgren, E.; Knudsen, J. et al. Adsorption and activation of CO on Co3O4(111) thin films. J. Phys. Chem. C 2015, 119, 16688–16699.

[29]

Jiang, D.; Yao, Y. G.; Li, T. Y.; Wan, G.; Pereira-Hernández, X. I.; Lu, Y. B.; Tian, J. S.; Khivantsev, K.; Engelhard, M. H.; Sun, C. J. et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew. Chem., Int. Ed. 2021, 60, 26054–26062.

[30]

Lu, Y. B.; Zhou, S. L.; Kuo, C. T.; Kunwar, D.; Thompson, C.; Hoffman, A. S.; Boubnov, A.; Lin, S.; Datye, A. K.; Guo, H. et al. Unraveling the intermediate reaction complexes and critical role of support-derived oxygen atoms in CO oxidation on single-atom Pt/CeO2. ACS Catal. 2021, 11, 8701–8715.

[31]

Li, Y. Y.; Kottwitz, M.; Vincent, J. L.; Enright, M. J.; Liu, Z. Y.; Zhang, L. H.; Huang, J. H.; Senanayake, S. D.; Yang, W. C. D.; Crozier, P. A. et al. Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nat. Commun. 2021, 12, 914.

[32]

Chen, H. Y. T.; Tosoni, S.; Pacchioni, G. Hydrogen adsorption, dissociation, and spillover on Ru10 clusters supported on anatase TiO2 and tetragonal ZrO2(101) surfaces. ACS Catal. 2015, 5, 5486–5495.

[33]

Zhang, S.; Xia, Z. M.; Zhang, M. K.; Zou, Y.; Shen, H. D.; Li, J. Y.; Chen, X.; Qu, Y. Q. Boosting selective hydrogenation through hydrogen spillover on supported-metal catalysts at room temperature. Appl. Catal. B:Environ. 2021, 297, 120418.

[34]

Sihag, A.; Xie, Z. L.; Thang, H. V.; Kuo, C. L.; Tseng, F. G.; Dyer, M. S.; Chen, H. Y. T. DFT insights into comparative hydrogen adsorption and hydrogen spillover mechanisms of Pt4/graphene and Pt4/anatase(101) surfaces. J. Phys. Chem. C 2019, 123, 25618–25627.

[35]

Luneau, M.; Lim, J. S.; Patel, D. A.; Sykes, E. C. H.; Friend, C. M.; Sautet, P. Guidelines to achieving high selectivity for the hydrogenation of α, β-unsaturated aldehydes with bimetallic and dilute alloy catalysts: A review. Chem. Rev. 2020, 120, 12834–12872.

[36]

Wang, X. F.; Liang, X. H.; Geng, P.; Li, Q. B. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts. ACS Catal. 2020, 10, 2395–2412.

[37]

Lan, X. C.; Wang, T. F. Highly selective catalysts for the hydrogenation of unsaturated aldehydes: A review. ACS Catal. 2020, 10, 2764–2790.

File
12274_2022_5279_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 July 2022
Revised: 01 November 2022
Accepted: 01 November 2022
Published: 27 December 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Nos. 21872109 and 22002115). S. Z. is also supported by the Guangdong Basic and Applied Basic Research Foundation (2022B1515020092). We also acknowledge the Fundamental Research Funds for the Central Universities (Nos. D5000210283, D5000210601, and D5000210829). The calculations were supported by TianHe-2 at Shanxi Supercomputing Center of China and Central for High Performance Computing of Northwestern Polytechnical University.

Return