Journal Home > Volume 16 , Issue 5

The low anodic oxidation potential severely suppresses the output voltage (≤ 0.6 V) of MXene-based symmetrical aqueous micro-supercapacitors (MSA-MSCs) employing acidic electrolytes. Herein, a surface terminals reconstruction mechanism on cathode of MSA-MSCs adopting aqueous neutral electrolyte (1 M Na2SO4) is first revealed by systematical electrochemical experiments and in/ex-situ spectral analysis, which indicates that: the -O terminals on Ti3C2Tx flakes of cathode can combine with intercalated Na+ cations during charging process to reconstruct into -ONa units to (i) inhibit the splitting reaction of adjacent water molecules, decreasing cathodic hydrogen evolution potential, and more significantly, (ii) lower the potential of zero voltage (P0V) between the symmetrical electrodes to avoid anode oxidation, enabling full use of the unexploited potential range of cathode. Thus, the output voltage of the MSA-MSCs tremendously expanded from 0.6 V in acidic polyacrylamide (PAM)/1 M H2SO4 hydrogel electrolyte to 1.5 V in neutral polyacrylamide/1 M Na2SO4 hydrogel electrolyte, boosting the corresponding areal energy density from 9.9 to 34.6 μW·h·cm–2. The demonstrated deep insight on the surface terminals reconstruction mechanism for synchronously modulating the P0V between symmetrical electrodes and hydrogen evolution potential on cathode provides critical guidance for widening the cell voltage of MSA-MSCs with safer and more inexpensive neutral electrolytes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surface terminals reconstruction: The way to widen the output voltage of MXene-based aqueous symmetrical micro-supercapacitors

Show Author's information Yudong Wu1,§Jimin Fu2,§Ningning He3Jun Liu3Tao Hua2Chengbing Qin4( )Haibo Hu1,4( )
School of Physics and Materials Science, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, China
Nanotechnology Centre, Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

§ Yudong Wu and Jimin Fu contributed equally to this work.

Abstract

The low anodic oxidation potential severely suppresses the output voltage (≤ 0.6 V) of MXene-based symmetrical aqueous micro-supercapacitors (MSA-MSCs) employing acidic electrolytes. Herein, a surface terminals reconstruction mechanism on cathode of MSA-MSCs adopting aqueous neutral electrolyte (1 M Na2SO4) is first revealed by systematical electrochemical experiments and in/ex-situ spectral analysis, which indicates that: the -O terminals on Ti3C2Tx flakes of cathode can combine with intercalated Na+ cations during charging process to reconstruct into -ONa units to (i) inhibit the splitting reaction of adjacent water molecules, decreasing cathodic hydrogen evolution potential, and more significantly, (ii) lower the potential of zero voltage (P0V) between the symmetrical electrodes to avoid anode oxidation, enabling full use of the unexploited potential range of cathode. Thus, the output voltage of the MSA-MSCs tremendously expanded from 0.6 V in acidic polyacrylamide (PAM)/1 M H2SO4 hydrogel electrolyte to 1.5 V in neutral polyacrylamide/1 M Na2SO4 hydrogel electrolyte, boosting the corresponding areal energy density from 9.9 to 34.6 μW·h·cm–2. The demonstrated deep insight on the surface terminals reconstruction mechanism for synchronously modulating the P0V between symmetrical electrodes and hydrogen evolution potential on cathode provides critical guidance for widening the cell voltage of MSA-MSCs with safer and more inexpensive neutral electrolytes.

Keywords: MXene, aqueous electrolyte, terminals reconstruction, potential of zero voltage, symmetrical micro-supercapacitor

References(55)

[1]

Jin, X. T.; Song, L.; Dai, C. L.; Xiao, Y. K.; Han. Y. Y.; Zhang, X. Q.; Li, X. Y.; Ba, C. C.; Zhang, J. T.; Zhao, Y. et al. An aqueous anti-freezing and heat-tolerant symmetric microsupercapacitor with 2. 3 V output voltage. Adv. Energy Mater. 2021, 11, 2101523.

[2]

Xiong, T.; Tan, T. L.; Lu, L.; Lee, W. S. V.; Xue, J. M. Harmonizing energy and power density toward 2. 7 V asymmetric aqueous supercapacitor. Adv. Energy Mater. 2018, 8, 1702630.

[3]

Gou, Q. Z.; Zhao, S.; Wang, J. C.; Li, M.; Xue, J. M. Recent advances on boosting the cell voltage of aqueous supercapacitors. Nano-Micro Lett. 2020, 12, 98.

[4]

Guo, H. Y.; Yeh, M. H.; Lai, Y. C.; Zi, Y. L.; Wu, C. S.; Wen, Z.; Hu, C. G.; Wang, Z. L. All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 2016, 10, 10580–10588.

[5]

Yang, Q.; Huang, Z. D.; Li, X. L.; Liu, Z. X.; Li, H. F.; Liang, G. J.; Wang, D. H.; Huang, Q.; Zhang, S. J.; Chen, S. M. et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self discharge funct. ACS Nano 2019, 13, 8275–8283.

[6]

Wang, X. H.; Mathis, T. S.; Li, K.; Lin, Z. F.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 2019, 4, 241–248.

[7]

Jiang, Q.; Lei, Y. J.; Liang, H. F.; Xi, K.; Xia, C.; Alshareef, H. N. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater. 2020, 27, 78–95.

[8]

Huang, H. C.; Chu, X.; Xie, Y. T.; Zhang, B. B.; Wang, Z. X.; Duan, Z. Y.; Chen, N. J.; Xu, Z.; Zhang, H. T.; Yang, W. Q. Ti3C2Tx MXene-based micro-supercapacitors with ultrahigh volumetric energy density for all-in-one Si-electronics. ACS Nano 2022, 16, 3776–3784.

[9]

Shi, D.; Yang, M. Z.; Zhang, B. G.; Ai, Z. Z.; Hu, H. X.; Shao, Y. L.; Shen, J. X.; Wu, Y. Z.; Hao, X. P. BCN-assisted built-in electric field in heterostructure:An innovative path for broadening the voltage window of aqueous supercapacitor. Adv. Funct. Mater. 2022, 32, 2108843.

[10]

Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; von Cresce, A. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem., Int. Ed. 2016, 55, 7136–7141.

[11]

Sui, Y. M.; Ji, X. L. Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 2021, 121, 6654–6695.

[12]

Yang, Q.; Wang, Y. K.; Li, X. L.; Li, H. F.; Wang, Z. F.; Tang, Z. J.; Ma, L. T.; Mo, F. N.; Zhi, C. Y. Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ. Mater. 2018, 1, 183–195.

[13]

Li, X. L.; Li, N.; Huang, Z. D.; Chen, Z.; Zhao, Y. W.; Liang, G. J.; Yang, Q.; Li, M.; Huang, Q.; Dong, B. B. et al. Confining aqueous Zn-Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano 2021, 15, 1718–1726.

[14]

Li, X. L.; Li, N.; Huang, Z. D.; Chen, Z.; Liang, G. J.; Yang, Q.; Li, M.; Zhao, Y. W.; Ma, L. T.; Dong, B. B. et al. Enhanced redox kinetics and duration of aqueous I2/I conversion chemistry by MXene confinement. Adv. Mater. 2021, 33, 2006897.

[15]

Vahidmohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[16]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[17]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

[18]

Mu, X. P.; Wang, D. S.; Du, F.; Chen, G.; Wang, C. Z.; Wei, Y. J.; Gogotsi, Y.; Gao, Y.; Dall’Agnese, Y. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv. Funct. Mater. 2019, 29, 1902953.

[19]

Dong, Y. F.; Shi, H. D.; Wu, Z. S. Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 2020, 30, 2000706.

[20]

Gao, Q.; Sun, W. W.; Ilani-Kashkouli, P.; Tselev, A.; Kent, P. R. C.; Kabengi, N.; Naguib, M.; Alhabeb, M.; Tsai, W. Y.; Baddorf, A. P. et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ. Sci. 2020, 13, 2549–2558.

[21]

Qin, J. Q.; Gao, J. M.; Shi, X. Y.; Chang, J. Y.; Dong, Y. F.; Zheng, S. H.; Wang, X.; Feng, L.; Wu, Z. S. Hierarchical ordered dual-mesoporous polypyrrole/graphene nanosheets as Bi-functional active materials for high-performance planar integrated system of micro-supercapacitor and gas sensor. Adv. Funct. Mater. 2020, 30, 1909756.

[22]

Zheng, S. H.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y. X.; Ma, J. X.; Liu, S. Z.; Wu, Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, 2005449.

[23]

Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Research Energy 2022, 1, e9120002.

[24]

Zhu, Y. Y.; Wang, S.; Ma, J. X.; Das, P.; Zheng, S. H.; Wu, Z. S. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Mater. 2022, 51, 500–526.

[25]

Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H. N. All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv. Energy Mater. 2018, 8, 1703043.

[26]

Zhang, C. F.; Anasori. B.; Seral-Ascaso, A.; Park. S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.

[27]

Li, X. X.; Ma, Y. N.; Shen, P. Z.; Zhang, C. K.; Cao, M. L.; Xiao, S. J.; Yan, J. F.; Luo, S. J.; Gao, Y. H. An ultrahigh energy density flexible asymmetric microsupercapacitor based on Ti3C2Tx and PPy/MnO2 with wide voltage window. Adv. Mater. Technol. 2020, 5, 2000272.

[28]

Li, X. L.; Li, M.; Yang, Q.; Wang, D. H.; Ma, L. T.; Liang, G. J.; Huang, Z. D.; Dong, B. B.; Huang, Q.; Zhi, C. Y. Vertically aligned Sn4+ preintercalated Ti2CTx MXene sphere with enhanced Zn Ion transportation and superior cycle lifespan. Adv. Energy Mater. 2020, 10, 2001394.

[29]

Qin, L. Q.; Tao, Q. Z.; Liu, X. J.; Fahlman, M.; Halim, J.; Persson, P. O. Å.; Rosen, J.; Zhang, F. L. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors. Nano Energy 2019, 60, 734–742.

[30]

Cheng. W. X.; Fu, J. M.; Hu, H. B.; Ho, D. Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density. Adv. Sci. 2021, 8, 2100775.

[31]
Zhu, Y. Y.; Zheng, S. H.; Qin, J. Q.; Ma, J. X.; Das, P.; Zhou, F.; Wu, Z. S. 2.4 V ultrahigh-voltage aqueous MXene-based asymmetric micro-supercapacitors with high volumetric energy density toward a self-sufficient integrated microsystem. Fundament. Res. , in press,https://doi.org.10.1016/j.fmre.2022.03.021.
[32]

Li, Z.; Song, J.; Hu, H. B.; Yuan, C. Z.; Wu, M. Z.; Ho, D. Rolled-up island-bridge (RIB): A new and general electrode configuration design for a wire-shaped stretchable micro-supercapacitor array. J. Mater. Chem. A 2021, 9, 2899–2911.

[33]

Hu, H. B.; Bai, Z. M.; Niu, B.; Wu, M. Z.; Hua, T. Binder-free bonding of modularized MXene thin films into thick film electrodes for on-chip micro-supercapacitors with enhanced areal performance metrics. J. Mater. Chem. A 2018, 6, 14876–14844.

[34]

Abdolhosseinzadeh, S.; Jiang, X. T.; Zhang, H.; Qiu, J. S.; Zhang, C. F. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 2021, 48, 214–240.

[35]

Zhang, C. F.; Kremer, M. P.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Anasori, B.; Gogotsi, Y.; Nicolosi, V. Stamping of flexible, coplanar micro-supercapacitors using MXene inks. Adv. Funct. Mater. 2018, 28, 1705506.

[36]

Ma, J. X.; Zheng, S. H.; Cao, Y. X.; Zhu, Y. Y.; Das, P.; Wang, H.; Liu, Y.; Wang, J. M.; Chi, L. P.; Liu, S. Z. et al. Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics. Adv. Energy Mater. 2021, 11, 2100746.

[37]

Pei, Z. B.; Hu, H. B.; Liang, G. J.; Ye, C. H. Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Lett. 2017, 9, 19.

[38]

Li, S.; Shi. Q.; Li. Y.; Yang. J.; Chang, T. H.; Jiang, J. W.; Chen. P. Y. Intercalation of metal ions into Ti3C2Tx MXene electrodes for high-areal-capacitance microsupercapacitors with neutral multivalent electrolytes. Adv. Funct. Mater. 2020, 30, 2003721.

[39]

Cao, Z. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Mater. 2021, 40, 10–21.

[40]

Jiao, S. Q.; Zhou, A. Q.; Wu, M. Z.; Hu, H. B. Kirigami patterning of MXene/bacterial cellulose composite paper for all-solid-state stretchable micro-supercapacitor arrays. Adv. Sci. 2019, 6, 1900529.

[41]

Wu, Y. D.; Hu, H. B.; Yuan, C. Z.; Song, J.; Wu, M. Z. Electrons/ions dual transport channels design: Concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy 2020, 74, 104812.

[42]

Weng, Z.; Li, F.; Wang, D. W.; Wen, L.; Cheng, H. M. Controlled electrochemical charge injection to maximize the energy density of supercapacitors. Angew. Chem., Int. Ed. 2013, 52, 3722–3725.

[43]

Yu, M. H.; Lin, D.; Feng, H. B.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge. Angew. Chem., Int. Ed. 2017, 56, 5454–5459.

[44]

Wang, X. H.; Mathis, T. S.; Sun, Y.; Tsai, W. Y.; Shpigel, N.; Shao, H.; Zhang, D. Z.; Hantanasirisakul, K.; Malchik, F.; Balke, N. et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 2021, 15, 15274–15284.

[45]

Zhu, Y. Y.; Zheng, S, H.; Lu, P. F.; Ma, J. X.; Das, P.; Su, F.; Cheng, H. M.; Wu, Z. S. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors. Natl. Sci. Rev. 2022, 9, nwac024.

[46]

Cao, Z. Q.; Hu, H. B.; Ho, D. Micro-redoxcapacitor: A hybrid architecture out of the notorious energy-power density dilemma. Adv. Funct. Mater. 2022, 32, 2111805.

[47]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

[48]

Jiao, S. Q.; Fu, J. M.; Wu, M. Z.; Hua, T.; Hu, H. B. Ion sieve: Tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano. 2022, 16, 1013–1024.

[49]

Wu, S. L.; Su, B. Z.; Sun, M. Z.; Gu, S.; Lu, Z. G.; Zhang, K. L.; Yu, D. Y. W.; Huang, B. L.; Wang, P. F.; Lee, C. S. et al. Dilute aqueous-aprotic hybrid electrolyte enabling a wide electrochemical window through solvation structure engineering. Adv. Mater. 2021, 33, 2102390.

[50]

Jiang, Y.; Yang, Y.; Ling, F. X.; Lu, G. X.; Huang, F. Y.; Tao, X. Y.; Wu, S. F.; Cheng, X. L.; Liu, F. F.; Li, D. J. et al. Artificial heterogeneous interphase layer with boosted ion affinity and diffusion for Na/K-metal batteries. Adv. Mater. 2022, 34, 2109439.

[51]

Yuan, X. G.; Guo, Y. J.; Gan, L.; Yang, X. A.; He, W. H.; Zhang, X. S.; Yin, Y. X.; Xin, S.; Yao, H. R.; Huang, Z. G. et al. A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for Na-ion batteries. Adv. Funct. Mater. 2022, 32, 2111466.

[52]

Li, S.; Chang, T. H.; Li, Y.; Ding, M.; Yang, J.; Chen, P. Y. Stretchable Ti3C2Tx MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. J. Mater. Chem. A 2021, 9, 4664–4672.

[53]

Yun, J.; Song, C.; Lee, H.; Park, H.; Jeong, Y. R.; Kim, J. W.; Jin, S. W.; Oh, S. Y.; Sun, L. F.; Zi, G. et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy 2018, 49, 644–654.

[54]

Guo, R. S.; Chen, J. T.; Yang, B. J.; Liu, L. Y.; Su, L. J.; Shen, B. S.; Yan, X. B. In-plane micro-supercapacitors for an integrated device on one piece of paper. Adv. Funct. Mater. 2017, 27, 1702394.

[55]

Shi, X. Y.; Wu, Z. S.; Qin, J. Q.; Zheng, S. H.; Wang, S.; Zhou, F.; Sun, C. L.; Bao, X. H. Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output. Adv. Mater. 2017, 29, 1703034.

Video
12274_2022_5262_MOESM2_ESM.avi
File
12274_2022_5262_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2022
Revised: 28 October 2022
Accepted: 29 October 2022
Published: 03 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financed by the National Natural Science Foundation of China (No. 51871001), Excellent Youth Fund of Anhui Province (No. 2108085Y17), Innovation and Entrepreneurship Support Plan of Anhui Province for Returned Personnels Studying Abroad (No. 2022LCX001), Project supported by the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (No. KF202212), and Hundred-Talent Program of Anhui Province.

Return