AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Recycle spent graphite to defect-engineered, high-power graphite anode

Jiawei Luo1,§Jingchao Zhang1,§Zhaoxin Guo1Zhedong Liu1Shuming Dou1Wei-Di Liu2Yanan Chen1 ( )Wenbin Hu1( )
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia

§ Jiawei Luo and Jingchao Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Recycle spent graphite to defect-engineered, high-power graphite anode This work reports a strategy to transfer spent graphite into defect-rich recycled graphite with superior rate performance by high-temperature shock (HTS) within ~ 60 s. This strategy will bring novel guidance for researchers in the development of high-power batteries.

Abstract

Graphite is a dominant anode material for lithium-ion batteries (LIBs) due to its outstanding electrochemical performance. However, slow lithium ion (Li+) kinetics of graphite anode restricts its further application. Herein, we report that high-temperature shock (HTS) can drive spent graphite (SG) into defect-rich recycled graphite (DRG) which is ideal for high-rate anode. The DRG exhibits the charging specific capacity of 323 mAh/g at a high current density of 2 C, which outperforms commercial graphite (CG, 120 mAh/g). The eminent electrochemical performance of DRG can be attributed to the recovery of layered structure and partial remaining defects of SG during ultrafast heating and cooling process, which can effectively reduce total strain energy, accelerate the phase transition in thermodynamics and improve the Li+ diffusion. This study provides a facile strategy to guide the re-graphitization of SG and design high performance battery electrode materials by defect engineering from the atomic level.

Electronic Supplementary Material

Download File(s)
12274_2022_5244_MOESM1_ESM.pdf (1.6 MB)
12274_2022_5244_MOESM2_ESM.pdf (644.7 KB)

References

[1]

Liu, Y. C.; Chen, Y. F.; Wang, J.; Wang, W.; Ding, Z. Y.; Li, L. Y.; Zhang, Y.; Deng, Y. D.; Wu, J. W.; Chen, Y. N. Hierarchical yolk-shell structured Li-rich cathode boosting cycling and voltage stabled LIBs. Nano Res. 2021, 15, 3178–3186.

[2]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[3]

Wang, T. R.; Song, Z. Y.; Zhang, Y. N.; Gao, Y. L.; Huang, L. Q.; Lin, S. J.; Luo, W. Direct recycling of shorted solid-state electrolytes enabled by targeted recovery. Energy Storage Mater. 2022, 52, 365–370.

[4]

Zhao, Z. Q.; Wang, C. Y.; Wang, H. Z.; Shen, Y. H.; Wang, Q. Y.; Li, S. W.; Liu, B.; Zhao, N. Q.; Zhong, C.; Hu, W. B. A simple way to induce anode-electrolyte interface engineering through a functional composite separator for zinc-nickel batteries. Nano Energy 2022, 97, 107162.

[5]

Wu, W. Y.; Song, Z. Y.; Dai, Y. M.; Zheng, X. Y.; Chai, G. Y.; Yang, J. B.; Luo, W. Magnetic actuation enables programmable lithium metal engineering. Adv. Energy Mater. 2022, 12, 2200999.

[6]

Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C. X.; Zhang, J.; Chen, S. H.; Xu, L.; Yuan, H.; Zhang, Q. Fast charging lithium batteries: Recent progress and future prospects. Small 2019, 15, 1805389.

[7]

Collin, R.; Miao, Y.; Yokochi, A.; Enjeti, P.; Von Jouanne, A. Advanced electric vehicle fast-charging technologies. Energies 2019, 12, 1839.

[8]

Zhao, R.; Sun, N.; Xu, B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries. Small Struct. 2021, 2, 2100132.

[9]

Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.

[10]

Bresser, D.; Passerini, S.; Scrosati, B. Leveraging valuable synergies by combining alloying and conversion for lithium-ion anodes. Energy Environ. Sci. 2016, 9, 3348–3367.

[11]

Zhang, H.; Yang, Y.; Ren, D. S.; Wang, L.; He, X. M. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.

[12]

Yang, X. G.; Liu, T.; Gao, Y.; Ge, S. H.; Leng, Y. J.; Wang, D. H.; Wang, C. Y. Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. Joule 2019, 3, 3002–3019.

[13]

Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Müller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Enabling 6 C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 2021, 11, 2003336.

[14]

Cheng, Q.; Yuge, R.; Nakahara, K.; Tamura, N.; Miyamoto, S. KOH etched graphite for fast chargeable lithium-ion batteries. J. Power Sources 2015, 284, 258–263.

[15]

Shim, J. H.; Lee, S. Characterization of graphite etched with potassium hydroxide and its application in fast-rechargeable lithium ion batteries. J. Power Sources 2016, 324, 475–483.

[16]

Kim, T. H.; Jeon, E. K.; Ko, Y.; Jang, B. Y.; Kim, B. S.; Song, H. K. Enlarging the d-spacing of graphite and polarizing its surface charge for driving lithium ions fast. J. Mater. Chem. A 2014, 2, 7600–7605.

[17]

Park, M. S.; Kim, J. H.; Jo, Y. N.; Oh, S. H.; Kim, H.; Kim, Y. J. Incorporation of phosphorus into the surface of natural graphite anode for lithium ion batteries. J. Mater. Chem. 2011, 21, 17960–17966.

[18]

Yu, P.; Tang, W.; Wu, F. F.; Zhang, C.; Luo, H. Y.; Liu, H.; Wang, Z. G. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: A review. Rare Met. 2020, 39, 1019–1033.

[19]

Li, W. Q.; Yue, M. Y.; Guo, H. N.; Yuan, Z. X.; Liu, Y. F.; Chen, K.; Gu, J. M.; Wang, Y. J. Rational design of MnS nanoparticles anchored on N,S-codoped carbon matrix as anode for lithium-ion batteries. Prog. Natl. Sci. :Mater. Int. 2021, 31, 649–655.

[20]

Wu, Y.; Wang, L. Y.; Li, Y. F.; Zhao, Z. Y.; Yin, L. W.; Li, H.; Bai, Y. J. KCl-modified graphite as high performance anode material for lithium-ion batteries with excellent rate performance. J. Phys. Chem. C 2017, 121, 13052–13058.

[21]

Dou, S. M.; Xu, J.; Cui, X. Y.; Liu, W. D.; Zhang, Z. C.; Deng, Y. D.; Hu, W. B.; Chen, Y. N. High-temperature shock enabled nanomanufacturing for energy-related applications. Adv. Energy Mater. 2020, 10, 2001331.

[22]

Liu, C.; Zhou, W.; Zhang, J. F.; Chen, Z. L.; Liu, S. L.; Zhang, Y.; Yang, J. X.; Xu, L. Y.; Hu, W. B.; Chen, Y. N. et al. Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction. Adv. Energy Mater. 2020, 10, 2001397.

[23]

Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.

[24]

Liu, Z. D.; Duan, C. P.; Dou, S. M.; Yuan, Q. Y.; Xu, J.; Liu, W. D.; Chen, Y. N. Ultrafast porous carbon activation promises high-energy density supercapacitors. Small 2022, 18, 2200954.

[25]

Liu, S. L.; Hu, Z.; Wu, Y. Z.; Zhang, J. F.; Zhang, Y.; Cui, B. H.; Liu, C.; Hu, S.; Zhao, N. Q.; Han, X. P. et al. Dislocation-strained IrNi alloy nanoparticles driven by thermal shock for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2006034.

[26]

Liu, S. L.; Shen, Y.; Zhang, Y.; Cui, B. H.; Xi, S. B.; Zhang, J. F.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Extreme environmental thermal shock induced dislocation-rich Pt nanoparticles boosting hydrogen evolution reaction. Adv. Mater. 2022, 34, 2106973.

[27]
Zhang, J. C.; Liu, Z. D.; Zeng, C. H.; Luo, J. W.; Deng, Y. D.; Cui, X. Y.; Chen, Y. N. High-voltage LiCoO2 cathodes for high-energy-density lithium-ion battery. Rare Met., in press, https://doi.org/10.1007/s12598-022-02070-6.
[28]

Gao, Y.; Zhang, J. L.; Jin, H.; Liang, G. Q.; Ma, L. L.; Chen, Y. Q.; Wang, C. Y. Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment. Carbon 2022, 189, 493–502.

[29]

Liang, H. J.; Hou, B. H.; Li, W. H.; Ning, Q. L.; Yang, X.; Gu, Z. Y.; Nie, X. J.; Wang, G.; Wu, X. L. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries. Energy Environ. Sci. 2019, 12, 3575–3584.

[30]

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

[31]

Stanford, M. G.; Bets, K. V.; Luong, D. X.; Advincula, P. A.; Chen, W. Y.; Li, J. T.; Wang, Z.; McHugh, E. A.; Algozeeb, W. A.; Yakobson, B. I. et al. Flash graphene morphologies. ACS Nano 2020, 14, 13691–13699.

[32]

Zong, L. B.; Chen, X.; Dou, S. M.; Fan, K. C.; Wang, Z. M.; Zhang, W. J.; Du, Y. M.; Xu, J.; Jia, X. F.; Zhang, Q. et al. Stable confinement of Fe/Fe3C in Fe,N-codoped carbon nanotube towards robust zinc-air batteries. Chin. Chem. Lett. 2021, 32, 1121–1126.

[33]

Zhang, H. W.; Hu, M. X.; Huang, Z. H.; Kang, F. Y.; Lv, R. T. Sodium-ion capacitors with superior energy-power performance by using carbon-based materials in both electrodes. Prog. Natl. Sci.: Mater. Int. 2020, 30, 13–19.

[34]

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

[35]

Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

[36]

Wang, M. M.; Wang, J. R.; Xiao, J. C.; Ren, N. Q.; Pan, B. C.; Chen, C. S.; Chen, C. H. Introducing a pseudocapacitive lithium storage mechanism into graphite by defect engineering for fast-charging lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 16279–16288.

[37]

Zhang, J. C.; Wen, J.; Liu, W. D.; Cui, X. Y.; Chen, Y. N. Cryo-EM for nanomaterials: Progress and perspective. Sci. China Mater. 2022, 65, 2613–2626.

[38]

Hÿtch, M. J.; Houdellier, F. Mapping stress and strain in nanostructures by high-resolution transmission electron microscopy. Microelectron. Eng. 2007, 84, 460–463.

[39]
Weng, S. T.; Wu, S. Y.; Liu, Z. P.; Yang, G. J.; Liu, X. Z.; Zhang, X.; Zhang, C.; Liu, Q. Y.; Huang, Y.; Li, Y. J. et al. Localized-domains staging structure and evolution in lithiated graphite. Carbon Energy, in press, https://doi.org/10.1002/cey2.224.
[40]

Liu, K.; Yang, S. L.; Luo, L. Q.; Pan, Q. C.; Zhang, P.; Huang, Y. G.; Zheng, F. H.; Wang, H. Q.; Li, Q. Y. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries. Electrochim. Acta 2020, 356, 136856.

[41]

Yi, C. X.; Yang, Y.; Zhang, T.; Wu, X. Q.; Sun, W.; Yi, L. S. A green and facile approach for regeneration of graphite from spent lithium ion battery. J. Cleaner Prod. 2020, 277, 123585.

[42]

Zhang, J.; Li, X. L.; Song, D. W.; Miao, Y. L.; Song, J. S.; Zhang, L. Q. Effective regeneration of anode material recycled from scrapped Li-ion batteries. J. Power Sources 2018, 390, 38–44.

[43]

Hou, D. H.; Guo, Z. Z.; Wang, Y.; Hou, X. H.; Yi, S. S.; Zhang, Z. T.; Hao, S. J.; Chen, D. L. Microwave-assisted reconstruction of spent graphite and its enhanced energy-storage performance as LIB anodes. Surf. Interfaces 2021, 24, 101098.

[44]

Cao, N.; Zhang, Y. L.; Chen, L. L.; Chu, W.; Huang, Y. G.; Jia, Y.; Wang, M. An innovative approach to recover anode from spent lithium-ion battery. J. Power Sources 2021, 483, 229163.

[45]

Chen, Q. H.; Huang, L. W.; Liu, J. B.; Luo, Y. T.; Chen, Y. G. A new approach to regenerate high-performance graphite from spent lithium-ion batteries. Carbon 2022, 189, 293–304.

[46]

Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Xu, R.; Jiang, L. L.; Huang, J. Q.; Zhang, Q. Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Struct. 2020, 1, 2000010.

[47]

Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol 2019, 14, 50–56.

[48]

Kim, H.; Son, Y.; Lee, J.; Lee, M.; Park, S.; Cho, J.; Choi, H. C. Nanocomb architecture design using germanium selenide as high-performance lithium storage material. Chem. Mater. 2016, 28, 6146–6151.

[49]

Park, J. H.; Yoon, H.; Cho, Y.; Yoo, C. Y. Investigation of lithium ion diffusion of graphite anode by the galvanostatic intermittent titration technique. Materials 2021, 14, 4683.

[50]

Sun, J.; Liu, H. M.; Chen, X.; Evans, D. G.; Yang, W. S.; Duan, X. Carbon nanorings and their enhanced lithium storage properties. Adv. Mater. 2013, 25, 1125–1130.

[51]

Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Topological defect dynamics in operando battery nanoparticles. Science 2015, 348, 1344–1347.

Nano Research
Pages 4240-4245
Cite this article:
Luo J, Zhang J, Guo Z, et al. Recycle spent graphite to defect-engineered, high-power graphite anode. Nano Research, 2023, 16(4): 4240-4245. https://doi.org/10.1007/s12274-022-5244-z
Topics:

2982

Views

45

Crossref

44

Web of Science

43

Scopus

1

CSCD

Altmetrics

Received: 10 September 2022
Revised: 17 October 2022
Accepted: 25 October 2022
Published: 13 December 2022
© Tsinghua University Press 2022
Return