Journal Home > Volume 16 , Issue 1

SnO2-based anode materials have attracted much attention due to high capacity and relatively mild voltage platforms. However, limited by low initial Coulombic efficiency (ICE) and poor stability, its practical application is still challenging. Recently, it has been found that compositing carbon or metal particles with SnO2 is an effective strategy to achieve high alkaline-ion storages. Although this strategy may improve the kinetics and ICE of the electrochemical reaction, the specific mechanism has not been clearly elucidated. In this work, we found that the invalidation SnO2 may go through two steps: 1) the conversion process from SnO2 to Sn and Li2O; 2) the collapse of the electrode material resulted from huge volume changes during the alloyed Sn with alkaline ions. To address these issues, a unique robust Co-NC shell derived from ZIF-67 is introduced, in which the transited metallic Co nanoparticles could accelerate the decomposition of Sn-O and Li-O bonds, thus expedite the kinetics of conversion reaction. As a result, the SnO2@Co-NC electrode achieves a more complete and efficient transfer between SnO2 and Sn phases, possessing a potential to achieve high alkaline-ion (Li+/Na+/K+) storages.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrochemical activation of oxygen atom of SnO2 to expedite efficient conversion reaction for alkaline-ion (Li+/Na+/K+) storages

Show Author's information Yong Cheng1,2,4,§Bingbing Chen3,§Limin Chang1( )Dongyu Zhang2Chunli Wang2( )Shaohua Wang2Ping Nie1Limin Wang1,2
Key Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
Department of Energy Science and Engineering, Nanjing Tech University, Nanjing 210000, China
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

§ Yong Cheng and Bingbing Chen contributed equally to this work.

Abstract

SnO2-based anode materials have attracted much attention due to high capacity and relatively mild voltage platforms. However, limited by low initial Coulombic efficiency (ICE) and poor stability, its practical application is still challenging. Recently, it has been found that compositing carbon or metal particles with SnO2 is an effective strategy to achieve high alkaline-ion storages. Although this strategy may improve the kinetics and ICE of the electrochemical reaction, the specific mechanism has not been clearly elucidated. In this work, we found that the invalidation SnO2 may go through two steps: 1) the conversion process from SnO2 to Sn and Li2O; 2) the collapse of the electrode material resulted from huge volume changes during the alloyed Sn with alkaline ions. To address these issues, a unique robust Co-NC shell derived from ZIF-67 is introduced, in which the transited metallic Co nanoparticles could accelerate the decomposition of Sn-O and Li-O bonds, thus expedite the kinetics of conversion reaction. As a result, the SnO2@Co-NC electrode achieves a more complete and efficient transfer between SnO2 and Sn phases, possessing a potential to achieve high alkaline-ion (Li+/Na+/K+) storages.

Keywords: anode, SnO2, electron transfer, conversion reaction, alkaline-ion storage

References(48)

[1]

Mao, J. F.; Ye, C.; Zhang, S. L.; Xie, F. X.; Zeng, R.; Davey, K.; Guo, Z. P.; Qiao, S. Z. Toward practical lithium-ion battery recycling: Adding value, tackling circularity and recycling-oriented design. Energy Environ. Sci. 2022, 15, 2732–2752.

[2]

Liu, X. H.; Zhang, L. S.; Yu, H. Q.; Wang, J. A.; Li, J. F.; Yang, K.; Zhao, Y. L.; Wang, H. Z.; Wu, B.; Brandon, N. P. et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle. Adv. Energy Mater. 2022, 12, 2200889.

[3]

Liang, J. X.; Wang, D. W. Design rationale and device configuration of lithium-ion capacitors. Adv. Energy Mater. 2022, 12, 2200920.

[4]

Zhao, S.; Sewell, C. D.; Liu, R.; Jia, S.; Wang, Z.; He, Y.; Yuan, K.; Jin, H.; Wang, S.; Liu, X. et al. SnO2 as advanced anode of alkali-ion batteries: Inhibiting Sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility. Adv. Energy Mater. 2020, 10, 1902657.

[5]

Zhou, L. Z.; Yang, H.; Han, T. T.; Song, Y. Z.; Yang, G. T.; Li, L. S. Carbon-based modification materials for lithium-ion battery cathodes: Advances and perspectives. Front. Chem. 2022, 10, 914930.

[6]

Lee, S. Y.; Park, K. Y.; Kim, W. S.; Yoon, S.; Hong, S. H.; Kang, K.; Kim, M. Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis. Nano Energy 2016, 19, 234–245.

[7]

Zhao, Y.; Wei, C.; Sun, S. N.; Wang, L. P.; Xu, Z. J. Reserving interior void space for volume change accommodation: An example of cable-like mwnts@SnO2@C composite for superior lithium and sodium storage. Adv. Sci. (Weinh. ) 2015, 2, 1500097.

[8]

Jiang, Y. Z.; Li, Y.; Zhou, P.; Yu, S. L.; Sun, W. P.; Dou, S. X. Enhanced reaction kinetics and structure integrity of Ni/SnO2 nanocluster toward high-performance lithium storage. ACS Appl. Mater. Interfaces 2015, 7, 26367–26373.

[9]

Tang, Y. P.; Wu, D. Q.; Chen, S.; Zhang, F.; Jia, J. P.; Feng, X. L. Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets. Energy Environ. Sci. 2013, 6, 2447–2451.

[10]

Liang, J.; Yu, X. Y.; Zhou, H.; Wu, H. B.; Ding, S. J.; Lou, X. W. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12803–12807.

[11]

Guan, C.; Wang, X. H.; Zhang, Q.; Fan, Z. X.; Zhang, H.; Fan, H. J. Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 2014, 14, 4852–4858.

[12]

Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

[13]

Dirican, M.; Lu, Y.; Ge, Y. Q.; Yildiz, O.; Zhang, X. W. Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl. Mater. Interfaces 2015, 7, 18387–18396.

[14]

Gong, K. Y.; Ma, Y. M.; Zhang, T.; Yan, L.; Miao, Y.; Gao, F. In situ microwave synthesis of SnO2-porous biomass carbon as anode materials for lithium-ion batteries. Adv. Eng. Mater. 2021, 23, 2100064.

[15]

Yesibolati, N.; Shahid, M.; Chen, W.; Hedhili, M. N.; Reuter, M. C.; Ross, F. M.; Alshareef, H. N. SnO2 anode surface passivation by atomic layer deposited HfO2 improves Li-ion battery performance. Small 2014, 10, 2849–2858.

[16]

Liu, R. Q.; Li, D. Y.; Wang, C.; Li, N.; Li, Q.; Lü, X. J.; Spendelow, J. S.; Wu, G. Core-shell structured hollow SnO2-polypyrrole nanocomposite anodes with enhanced cyclic performance for lithium-ion batteries. Nano Energy 2014, 6, 73–81.

[17]

Wang, H. K.; Rogach, A. L. Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 2013, 26, 123–133.

[18]

Weng, Y.; Zhang, Z. Y.; Zhang, H. Z.; Zhou, Y. Y.; Zhao, X. N.; Xu, X. R. TiO2 hollow spheres with flower-like SnO2 shell as anodes for lithium-ion batteries. Front. Chem. 2021, 9, 660309.

[19]

Gao, C. W.; Jiang, Z. J.; Wang, P. X.; Jensen, L. R.; Zhang, Y. F.; Yue, Y. Z. Optimized assembling of MOF/SnO2/graphene leads to superior anode for lithium ion batteries. Nano Energy 2020, 74, 104868.

[20]

Cheng, Y.; Wang, S. H.; Zhou, L.; Chang, L. M.; Liu, W. Q.; Yin, D. M.; Yi, Z.; Wang, L. M. SnO2 quantum dots: Rational design to achieve highly reversible conversion reaction and stable capacities for lithium and sodium storage. Small 2020, 16, 2000681.

[21]

Wang, C. L.; Sun, L. S.; Tian, B. B.; Cheng, Y.; Wang, L. M. Carbon supported MoO2 spheres boosting ultra-stable lithium storage with high volumetric density. Energy Environ. Mater. 2022, 5, 245–252.

[22]

Hu, R. Z.; Ouyang, Y. P.; Liang, T.; Wang, H.; Liu, J.; Chen, J.; Yang, C. H.; Yang, L. C.; Zhu, M. Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 2017, 29, 1605006.

[23]

Asenbauer, J.; Wirsching, A. L.; Lang, M.; Indris, S.; Eisenmann, T.; Mullaliu, A.; Birrozzi, A.; Hoefling, A.; Geiger, D.; Kaiser, U. et al. Comprehensive approach to investigate the de-/lithiation mechanism of Fe-doped SnO2 as lithium-ion anode material. Adv. Sustainable Syst. 2022, 6, 2200102.

[24]

Huang, G.; Yin, D. M.; Wang, L. M. A general strategy for coating metal-organic frameworks on diverse components and architectures. J. Mater. Chem. A 2016, 4, 15106–15116.

[25]
Meng, F. B.; Qin, J. Y.; Xiong, X. Y.; Li, X. J.; Hu, R. Z. Understanding the reversible reactions of Li-N2 battery catalyzed with SnO2. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12298.
DOI
[26]

Li, Z. P.; Qin, H. Y.; Zhu, K. J.; Liu, P.; Chen, X. C.; Wang, X. T.; Li, H. X.; Jiao, L. F. Synergistic effect of 3D flexible framework with sodiophilic mesoporous SnO2 nanosheet arrays on dendrite-free sodium metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 16394–16403.

[27]

Jin, S. L.; Gu, F. J.; Wang, J. T.; Ma, X.; Qian, C. L.; Lan, Y. X.; Han, Q.; Li, J. Q.; Wang, X. R.; Zhang, R. et al. Elaborate interface design of SnS2/SnA2@c/RGO nanocomposite as a high-performance anode for lithium-ion batteries. Electrochim. Acta 2022, 405, 139799.

[28]

Li, D.; Zhang, J. Q.; Ahmed, S. M.; Suo, G. Q.; Wang, W.; Feng, L.; Hou, X. J.; Yang, Y. L.; Ye, X. H.; Zhang, L. Amorphous carbon coated SnO2 nanohseets on hard carbon hollow spheres to boost potassium storage with high surface capacitive contributions. J. Colloid Interface Sci. 2020, 574, 174–181.

[29]

Li, R.; Zhang, G. Q.; Wang, Y. T.; Lin, Z. W.; He, C. X.; Li, Y. L.; Ren, X. Z.; Zhang, P. X.; Mi, H. W. Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage. Nano Energy 2021, 90, 106591.

[30]

Shen, Y. B.; Cao, Z.; Wu, Y. Q.; Cheng, Y.; Xue, H. J.; Zou, Y. G.; Liu, G.; Yin, D. M.; Cavallo, L.; Wang, L. M. et al. Catalysis of silica-based anode (de-)lithiation: Compositional design within a hollow structure for accelerated conversion reaction kinetics. J. Mater. Chem. A 2020, 8, 12306–12313.

[31]

Zhou, L.; Zhang, J.; Wu, Y. Q.; Wang, W. X.; Ming, H.; Sun, Q. J.; Wang, L. M.; Ming, J.; Alshareef, H. N. Understanding Ostwald ripening and surface charging effects in solvothermally-prepared metal oxide-carbon anodes for high performance rechargeable batteries. Adv. Energy Mater. 2019, 9, 1902194.

[32]

Kim, K. H.; Song, Y. J.; Ahn, H. J. MXene framework-supported F, S, and Co ternary-doped tin dioxide hybrid structures for ultrafast and stable lithium-ion batteries. Int. J. Energy Res. 2022, 46, 11336–11345.

[33]

Suo, G. Q.; Li, D.; Feng, L.; Hou, X. J.; Yang, Y. L.; Wang, W. SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries. J. Electroanal. Chem. 2019, 833, 113–118.

[34]

Vivier, V.; Orazem, M. E. Impedance analysis of electrochemical systems. Chem. Rev. 2022, 122, 11131–11168.

[35]

Lu, B.; Qu, M.; He, Q.; Xie, Z. Y.; Liu, L. H.; Huang, X.; Li, J.; Li, L.; Ding, W.; Wei, Z. D. The catalysis of (de)lithiation in a nerve-cell-like anode of Li-ion battery. J. Mater. Chem. A 2022, 10, 10960–10966.

[36]

Shi, X. J.; Liu, W. Q.; Zhang, D. Y.; Wang, C. L.; Zhao, J. X.; Wang, X. W.; Chen, B. B.; Chang, L. M.; Cheng, Y.; Wang, L. M. Nanoscale localized growth of SnSb for general-purpose high performance alkali (Li, Na, K) ion storage. Chem. Eng. J. 2022, 431, 134318.

[37]

Zhang, H. H.; Cheng, Y.; Zhang, Q. B.; Ye, W. B.; Yu, X. H.; Wang, M. S. Fast and durable potassium storage enabled by constructing stress-dispersed Co3Se4 nanocrystallites anchored on graphene sheets. ACS Nano 2021, 15, 10107–10118.

[38]

Sheng, B. B.; Wang, L. F.; Huang, H. J.; Yang, H.; Xu, R.; Wu, X. J.; Yu, Y. Boosting potassium storage by integration advantageous of defect engineering and spatial confinement: A case study of Sb2Se3. Small 2020, 16, 2005272.

[39]

Cheng, Y.; Chen, B. B.; Zhu, M. Y.; Chang, L. M.; Zhang, D. Y.; Wang, C. L.; Wang, S. H.; Wang, L. M. Toward ultra-long cycling stability and high lithium storage performances: Silica anodes with catalytic effects of low-cost metals particles. Appl. Mater. Today 2021, 25, 101205.

[40]

Peng, Q. K.; Zhang, S. P.; Yang, H.; Sheng, B. B.; Xu, R.; Wang, Q. S.; Yu, Y. Boosting potassium storage performance of the Cu2S anode via morphology engineering and electrolyte chemistry. ACS Nano 2020, 14, 6024–6033.

[41]

Qiu, H. L.; Zhao, L. N.; Asif, M.; Huang, X. X.; Tang, T. Y.; Li, W.; Zhang, T.; Shen, T.; Hou, Y. L. SnO2 nanoparticles anchored on carbon foam as a freestanding anode for high performance potassium-ion batteries. Energy Environ. Sci. 2020, 13, 571–578.

[42]

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

[43]

Wang, Y. X.; Ren, J.; Gao, X.; Zhang, W. J.; Duan, H. P.; Wang, M.; Shui, J. L.; Xu, M. Self-adaptive electrode with SWCNT bundles as elastic substrate for high-rate and long-cycle-life lithium/sodium ion batteries. Small 2018, 14, 1802913.

[44]

Ma, D. T.; Li, Y. L.; Mi, H. W.; Luo, S.; Zhang, P. X.; Lin, Z. Q.; Li, J. Q.; Zhang, H. Robust SnO2–x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 8901–8905.

[45]

Xu, Y.; Matios, E.; Luo, J. M.; Li, T.; Lu, X.; Jiang, S. H.; Yue, Q.; Li, W. Y.; Kang, Y. J. SnO2 quantum dots enabled site-directed sodium deposition for stable sodium metal batteries. Nano Lett. 2021, 21, 816–822.

[46]

Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; Shi, C. S.; Zhao, N. Q. Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J. Power Sources 2019, 441, 227191.

[47]

Liang, J.; Zhu, G. Y.; Zhang, Y. Z.; Liang, H. F.; Huang, W. Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries. Nano Res. 2022, 15, 2023–2029.

[48]

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Xia, C.; Kang, Q.; Zhang, Y. Z.; Liang, H. F.; Jin, Z. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 2021, 14, 4442–4470.

File
12274_2022_5188_MOESM1_ESM.pdf (1.6 MB)
12274_2022_5188_MOESM2_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 August 2022
Revised: 30 September 2022
Accepted: 10 October 2022
Published: 08 November 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is financially supported by the National Key R&D Program of China (No. 2017YFE0198100), the National Natural Science Foundation of China (Nos. 21975250 and 52072145), Science and Technology Development Program of Jilin Province (No. YDZJ202101ZYTS185), the Open Pogram of Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, China (Nos. 2020005 and 2021007). and the Open Pogram of State Key Laboratory of Metastable Materials Science and Technology (Yanshan University), China (No. 202110).

Return