Journal Home > Volume 16 , Issue 2

The biomineralization of CaCO3 often involves the transformation of amorphous precursors into crystalline phases, which is regulated by various proteins and inorganic ions such as Mg2+ ions. While the effects of Mg2+ ions on the polymorph and shape of the crystalline CaCO3 have been observed and studied, the interplay between Mg2+ ions and CaCO3 during the mineralization remains unclear. This work focuses on the mechanism of Mg2+ ion-regulated mineralization of CaCO3. By tracing the Mg isotope fractionation, the different mineralization pathways of CaCO3 under different Mg2+ ion concentrations had been clarified. Detailed regulatory role of Mg2+ ions at the different stages of mineralization had been proposed through combining the fractionation data with the analyses of the CaCO3 polymorph and shape evolution. These results provide a clear view of the Mg-mediated crystallization process of amorphous CaCO3, which can be used to finely control the phase of the crystalline products according to different needs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phase transformation-induced Mg isotope fractionation in Mg-mediated CaCO3 mineralization

Show Author's information Yi-Ming Ju1Fang Huang2,3Xin Ding2,3( )Li-Bo Mao1( )Shu-Hong Yu1( )
Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

Abstract

The biomineralization of CaCO3 often involves the transformation of amorphous precursors into crystalline phases, which is regulated by various proteins and inorganic ions such as Mg2+ ions. While the effects of Mg2+ ions on the polymorph and shape of the crystalline CaCO3 have been observed and studied, the interplay between Mg2+ ions and CaCO3 during the mineralization remains unclear. This work focuses on the mechanism of Mg2+ ion-regulated mineralization of CaCO3. By tracing the Mg isotope fractionation, the different mineralization pathways of CaCO3 under different Mg2+ ion concentrations had been clarified. Detailed regulatory role of Mg2+ ions at the different stages of mineralization had been proposed through combining the fractionation data with the analyses of the CaCO3 polymorph and shape evolution. These results provide a clear view of the Mg-mediated crystallization process of amorphous CaCO3, which can be used to finely control the phase of the crystalline products according to different needs.

Keywords: magnesium, mineralization, calcium carbonate, isotope fractionation

References(34)

[1]

Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551–4627.

[2]

Wolf, S. E.; Böhm, C. F.; Harris, J.; Demmert, B.; Jacob, D. E.; Mondeshki, M.; Ruiz-Agudo, E.; Rodríguez-Navarro, C. Nonclassical crystallization in vivo et in vitro (I): Process–structure–property relationships of nanogranular biominerals. J. Struct. Biol. 2016, 196, 244–259.

[3]

Rodríguez-Navarro, C.; Ruiz-Agudo, E.; Harris, J.; Wolf, S. E. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J. Struct. Biol. 2016, 196, 260–287.

[4]

Rieger, J.; Kellermeier, M.; Nicoleau, L. Formation of nanoparticles and nanostructures—An industrial perspective on CaCO3, cement, and polymers. Angew. Chem., Int. Ed. 2014, 53, 12380–12396.

[5]

Morse, J. W.; Arvidson, R. S.; Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 2007, 107, 342–381.

[6]

Zou, Z. Y.; Habraken, W. J. E. M.; Matveeva, G.; Jensen, A. C. S.; Bertinetti, L.; Hood, M. A.; Sun, C. Y.; Gilbert, P. U. P. A.; Polishchuk, I.; Pokroy, B. et al. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science 2019, 363, 396–400.

[7]

Jehannin, M.; Rao, A.; Cölfen, H. New horizons of nonclassical crystallization. J. Am. Chem. Soc. 2019, 141, 10120–10136.

[8]

Neira-Carrillo, A.; Vásquez-Quitral, P.; Sánchez, M.; Farhadi-Khouzani, M.; Aguilar-Bolados, H.; Yazdani-Pedram, M.; Cölfen, H. Functionalized multiwalled CNTs in classical and nonclassical CaCO3 crystallization. Nanomaterials 2019, 9, 1169.

[9]

Brunner, J.; Maier, B.; Rosenberg, R.; Sturm, S.; Cölfen, H.; Sturm, E. V. Nonclassical recrystallization. Chem.—Eur. J. 2020, 26, 15242–15248.

[10]

Jin, B.; Liu, Z. M.; Tang, R. K. Recent experimental explorations of non-classical nucleation. CrystEngComm 2020, 22, 4057–4073.

[11]

Purgstaller, B.; Goetschl, K. E.; Mavromatis, V.; Dietzel, M. Solubility investigations in the amorphous calcium magnesium carbonate system. CrystEngComm 2019, 21, 155–164.

[12]

Lopez-Berganza, J. A.; Chen, S. Y.; Espinosa-Marzal, R. M. Tailoring calcite growth through an amorphous precursor in a hydrogel environment. Cryst. Growth Des. 2019, 19, 3192–3205.

[13]

Zou, Z. Y.; Yang, X. F.; Albéric, M.; Heil, T.; Wang, Q. H.; Pokroy, B.; Politi, Y.; Bertinetti, L. Additives control the stability of amorphous calcium carbonate via two different mechanisms: Surface adsorption versus bulk incorporation. Adv. Funct. Mater. 2020, 30, 2000003.

[14]

Zou, Z. Y.; Xie, J. J.; Macías-Sánchez, E.; Fu, Z. Y. Nonclassical crystallization of amorphous calcium carbonate in the presence of phosphate ions. Cryst. Growth Des. 2021, 21, 414–423.

[15]

Zhang, Z. N.; Xie, Y. D.; Xu, X. R.; Pan, H. H.; Tang, R. K. Transformation of amorphous calcium carbonate into aragonite. J. Cryst. Growth 2012, 343, 62–67.

[16]

Xue, Z. H.; Xue, N. The cooperative effect of BSA langmuir monolayers and magnesium ions on calcium carbonate crystallization. Open Access Library J. 2019, 6, e5551.

[17]

Chang, C. Y.; Yang, S. Y.; Chan, J. C. C. Solubility product of amorphous magnesium carbonate. J. Chin. Chem. Soc. 2021, 68, 476–481.

[18]

Purgstaller, B.; Mavromatis, V.; Goetschl, K. E.; Steindl, F. R.; Dietzel, M. Effect of temperature on the transformation of amorphous calcium magnesium carbonate with near-dolomite stoichiometry into high Mg-calcite. CrystEngComm 2021, 23, 1969–1981.

[19]

Liu, Y. Y.;Jiang, J.; Gao, M. R.; Yu, B.; Mao, L. B.; Yu, S. H. Phase transformation of magnesium amorphous calcium carbonate (Mg-ACC) in a binary solution of ethanol and water. Cryst. Growth Des. 2013, 13, 59–65.

[20]

Jensen, A. C. S.; Imberti, S.; Habraken, W. J. E. M.; Bertinetti, L. Small ionic radius limits magnesium water interaction in amorphous calcium/magnesium carbonates. J. Phys. Chem. C 2020, 124, 6141–6144.

[21]

Chang, B.; Li, C.; Liu, D.; Foster, I.; Tripati, A.; Lloyd, M. K.; Maradiaga, I.; Luo, G. M.; An, Z. H.; She, Z. B. et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proc. Natl. Acad. Sci. USA 2020, 117, 14005–14014.

[22]

Liu, C.; Li, W. Q. Transformation of amorphous precursor to crystalline carbonate: Insights from Mg isotopes in the dolomite-analogue mineral norsethite [BaMg(CO3)2]. Geochim. Cosmochim. Acta 2020, 272, 1–20.

[23]

Xia, Z. G.; Horita, J.; Reuning, L.; Bialik, O. M.; Hu, Z. Y.; Waldmann, N. D.; Liu, C.; Li, W. Q. Extracting Mg isotope signatures of ancient seawater from marine halite: A reconnaissance. Chem. Geol. 2020, 552, 119768.

[24]

Schauble, E. A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim. Cosmochim. Acta 2011, 75, 844–869.

[25]

Higgins, J. A.; Schrag, D. P. The Mg isotopic composition of Cenozoic seawater-evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci. Lett. 2015, 416, 73–81.

[26]

Rustad, J. R.; Casey, W. H.;Yin, Q. Z.; Bylaska, E. J.; Felmy, A. R.; Bogatko, S. A.;Jackson, V. E.; Dixon, D. A. Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals. Geochim. Cosmochim. Acta 2010, 74, 6301–6323.

[27]

Mavromatis, V.; Gautier, Q.; Bosc, O.; Schott, J. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite. Geochim. Cosmochim. Acta 2013, 114, 188–203.

[28]

Li, W. Q.; Beard, B. L.; Li, C. X.; Xu, H. F.; Johnson, C. M. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim. Cosmochim. Acta 2015, 157, 164–181.

[29]

Wang, Z. R.; Hu, P.; Gaetani, G.; Liu, C.; Saenger, C.; Cohen, A.; Hart, S. Experimental calibration of Mg isotope fractionation between aragonite and seawater. Geochim. Cosmochim. Acta 2013, 102, 113–123.

[30]

Politi, Y.; Batchelor, D. R.; Zaslansky, P.; Chmelka, B. F.; Weaver, J. C.; Sagi, I.;Weiner, S.; Addadi, L. Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: A structure-function investigation. Chem. Mater. 2010, 22, 161–166.

[31]

Wombacher, F.; Eisenhauer, A.; Böhm, F.; Gussone, N.; Regenberg, M.; Dullo, W. C.; Rüggeberg, A. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim. Cosmochim. Acta 2011, 75, 5797–5818.

[32]
LiW. Q.ChakrabortyS.BeardB. L.RomanekC. S.JohnsonC. M. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditionsEarth Planet Sci. Lett.2012333–33430431610.1016/j.jpgl.2012.04.010

Li, W. Q.; Chakraborty, S.; Beard, B. L.; Romanek, C. S.; Johnson, C. M. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions. Earth Planet Sci. Lett. 2012, 333–334, 304–316.

[33]

Yang, S. Y.; Chang, H. H.; Lin, C. J.; Huang, S. J.; Chan, J. C. C. Is Mg-stabilized amorphous calcium carbonate a homogeneous mixture of amorphous magnesium carbonate and amorphous calcium carbonate? Chem. Commun. 2016, 52, 11527–11530.

[34]

Liu, Z. M.; Zhang, Z. S.; Wang, Z. M.; Jin, B.; Li, D. S.; Tao, J. H.; Tang, R. K.; De Yoreo, J. J. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl. Acad. Sci. USA 2020, 117, 3397–3404.

File
12274_2022_5171_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2022
Revised: 08 October 2022
Accepted: 09 October 2022
Published: 05 December 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. U1932213, 51732011, and 21701161), the National Key Research and Development Program of China (Nos. 2018YFE0202201 and 2021YFA0715700), Science and Technology Major Project of Anhui Province (No. 201903a05020003), and the University Synergy Innovation Program of Anhui Province (No. GXXT-2019-028). The authors acknowledge Zhenwu Chen and Zeng Zheng for Mg isotope chemical purifications and measurements.

Return