Journal Home > Volume 16 , Issue 4

Stable and bioactive material–tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material–tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell–resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO2 nanosheets

Show Author's information Rongchen Xu1,2,§Xiaodan Mu1,§Zunhan Hu3,§Chongzhi Jia1Zhenyu Yang4Zhongliang Yang1Yiping Fan1Xiaoyu Wang1,5Yuefeng Wu6Xiaotong Lu6Jihua Chen4( )Guolei Xiang6( )Hongbo Li1( )
Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
Department of Stomatology, Kunming Medical University, Kunming 650500, China
National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
Department of Stomatology, The Strategic Support Force Medical Center, Beijing 100101, China
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

§ Rongchen Xu, Xiaodan Mu, and Zunhan Hu contributed equally to this work.

Abstract

Stable and bioactive material–tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material–tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell–resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale.

Keywords: biomaterial, TiO2 nanosheets, material–tissue interface, pulpo-dentinal complex, resin composite

References(66)

[1]

Zhang, H.; Zhang, Z. H.; Zhang, H.; Chen, C. W.; Zhang, D. G.; Zhao, Y. J. Protein-based hybrid responsive microparticles for wound healing. ACS Appl. Mater. Interfaces 2021, 13, 18413–18422.

[2]

Wang, Y. A.; Zhang, J. W.; Zhao, Y.; Pu, M. J.; Song, X. Y.; Yu, L. M.; Yan, X. F.; Wu, J.; He, Z. Y. Innovations and challenges of polyphenol-based smart drug delivery systems. Nano Res. 2022, 15, 8156–8184.

[3]

Kasper, M.; Ellenbogen, B.; Hardy, R.; Cydis, M.; Mojica-Santiago, J.; Afridi, A.; Spearman, B. S.; Singh, I.; Kuliasha, C. A.; Atkinson, E. et al. Development of a magnetically aligned regenerative tissue-engineered electronic nerve interface for peripheral nerve applications. Biomaterials 2021, 279, 121212.

[4]

Nishimura, T.; Sasaki, Y.; Akiyoshi, K. Biotransporting self-assembled nanofactories using polymer vesicles with molecular permeability for enzyme prodrug cancer therapy. Adv. Mater. 2017, 29, 1702406.

[5]

Van Landuyt, K. L.; Snauwaert, J.; De Munck, J.; Peumans, M.; Yoshida, Y.; Poitevin, A.; Coutinho, E.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials 2007, 28, 3757–3785.

[6]

de Paula Rodrigues, M.; Soares, P. B. F.; Gomes, M. A. B.; Pereira, R. A.; Tantbirojn, D.; Versluis, A.; Soares, C. J. Direct resin composite restoration of endodontically-treated permanent molars in adolescents: Bite force and patient-specific finite element analysis. J. Appl. Oral. Sci. 2020, 28, e20190544.

[7]

Maleckis, K.; Kamenskiy, A.; Lichter, E. Z.; Oberley-Deegan, R.; Dzenis, Y.; MacTaggart, J. Mechanically tuned vascular graft demonstrates rapid endothelialization and integration into the porcine iliac artery wall. Acta Biomater. 2021, 125, 126–137.

[8]

Groen, W. M.; Diloksumpan, P.; Van Weeren, P. R.; Levato, R.; Malda, J. From intricate to integrated: Biofabrication of articulating joints. J. Orthop. Res. 2017, 35, 2089–2097.

[9]

Gong, H. Y.; Hajizadeh, S.; Liu, W. F.; Ye, L. Imprinted polymer beads loaded with silver nanoparticles for antibacterial applications. ACS Appl. Bio Mater. 2021, 4, 2829–2838.

[10]

Zheng, C.; Zhang, X. L.; Liu, W.; Liu, B.; Yang, H. H.; Lin, Z. A.; Chen, G. N. A selective artificial enzyme inhibitor based on nanoparticle–enzyme interactions and molecular imprinting. Adv. Mater. 2013, 25, 5922–5927.

[11]

Liu, T. Y.; Li, L.; Cheng, C.; He, B. F.; Jiang, T. Y. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. Nano Res. 2022, 15, 7267–7285.

[12]

Park, G.; Kim, H. O.; Lim, J. W.; Park, C.; Yeom, M.; Song, D.; Haam, S. Rapid detection of influenza A (H1N1) virus by conductive polymer-based nanoparticle via optical response to virus-specific binding. Nano Res. 2022, 15, 2254–2262.

[13]

Tian, X. J.; Wang, Y.; Duan, S. M.; Hao, Y. J.; Zhao, K. X.; Li, Y.; Dai, R. T.; Wang, W. H. Evaluation of a novel nano-size collagenous matrix film cross-linked with gallotannins catalyzed by laccase. Food Chem. 2021, 351, 129335.

[14]

Dhand, A. P.; Galarraga, J. H.; Burdick, J. A. Enhancing biopolymer hydrogel functionality through interpenetrating networks. Trends Biotechnol. 2021, 39, 519–538.

[15]

Martin, J. R.; Howard, M. T.; Wang, S.; Berger, A. G.; Hammond, P. T. Oxidation-responsive, tunable growth factor delivery from polyelectrolyte-coated implants. Adv. Healthc. Mater. 2021, 10, 2001941.

[16]

Gu, L. S.; Shan, T. T.; Ma, Y. X.; Tay, F. R.; Niu, L. N. Novel biomedical applications of crosslinked collagen. Trends Biotechnol. 2019, 37, 464–491.

[17]

He, Q. L.; Liao, Y. G.; Zhang, J. W.; Yao, X. D.; Zhou, W. Y.; Hong, Y.; Ouyang, H. W. “All-in-one” gel system for whole procedure of stem-cell amplification and tissue engineering. Small 2020, 16, 1906539.

[18]

Tian, K.; Suo, Z. G.; Vlassak, J. J. Chemically coupled interfacial adhesion in multimaterial printing of hydrogels and elastomers. ACS Appl. Mater. Interfaces 2020, 12, 31002–31009.

[19]

Pinnaratip, R.; Bhuiyan, M. S. A.; Meyers, K.; Rajachar, R. M.; Lee, B. P. Multifunctional biomedical adhesives. Adv. Healthc. Mater. 2019, 8, 1801568.

[20]

Zhou, J.; Gao, Z.; Xiang, G. L.; Zhai, T. Y.; Liu, Z. K.; Zhao, W. X.; Liang, X.; Wang, L. Y. Interfacial compatibility critically controls Ru/TiO2 metal–support interaction modes in CO2 hydrogenation. Nat. Commun. 2022, 13, 327.

[21]

Tang, X. M.; Huang, K.; Dai, J.; Wu, Z. Y.; Cai, L.; Yang, L. L.; Wei, J.; Sun, H. L. Influences of surface treatments with abrasive paper and sand-blasting on surface morphology, hydrophilicity, mineralization and osteoblasts behaviors of n-CS/PK composite. Sci. Rep. 2017, 7, 568.

[22]

Cabrera, I. C.; Berlioz, S.; Fahs, A.; Louarn, G.; Carriere, P. Chemical functionalization of Nano fibrillated cellulose by glycidyl silane coupling agents: A grafted silane network characterization study. Int. J. Biol. Macromol. 2020, 165, 1773–1782.

[23]

Xu, R. C.; Yu, F.; Huang, L.; Zhou, W.; Wang, Y.; Wang, F.; Sun, X.; Chang, G.; Fang, M.; Zhang, L. et al. Isocyanate-terminated urethane-based dental adhesive bridges dentinal matrix collagen with adhesive resin. Acta Biomater. 2019, 83, 140–152.

[24]

Arno, M. C.; Inam, M.; Weems, A. C.; Li, Z. H.; Binch, A. L. A.; Platt, C. I.; Richardson, S. M.; Hoyland, J. A.; Dove, A. P.; O'Reilly, R. K. Exploiting the role of nanoparticle shape in enhancing hydrogel adhesive and mechanical properties. Nat. Commun. 2020, 11, 1420.

[25]

Stojanović, Z. S.; Ignjatović, N.; Wu, V.; Žunič, V.; Veselinović, L.; Škapin, S.; Miljković, M.; Uskoković, V.; Uskoković, D. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. Mater. Sci. Eng. :C 2016, 68, 746–757.

[26]

Zhang, Y. G.; Li, J. P.; Mouser, V. H. M.; Roumans, N.; Moroni, L.; Habibovic, P. Biomimetic mechanically strong one-dimensional hydroxyapatite/poly(D, L-lactide) composite inducing formation of anisotropic collagen matrix. ACS Nano 2021, 15, 17480–17498.

[27]

Zhang, J. Y.; Chen, H. L.; Zhao, M.; Liu, G. T.; Wu, J. 2D nanomaterials for tissue engineering application. Nano Res. 2020, 13, 2019–2034.

[28]

Azizi-Lalabadi, M.; Jafari, S. M. Bio-nanocomposites of graphene with biopolymers; fabrication, properties, and applications. Adv. Colloid Interface Sci. 2021, 292, 102416.

[29]

Qu, G. B.; Xia, T.; Zhou, W. H.; Zhang, X.; Zhang, H. Y.; Hu, L. G.; Shi, J. B.; Yu, X. F.; Jiang, G. B. Property–activity relationship of black phosphorus at the nano–bio interface: From molecules to organisms. Chem. Rev. 2020, 120, 2288–2346.

[30]

Chuang, Y. C.; Chang, C. C.; Yang, F.; Simon, M.; Rafailovich, M. TiO2 nanoparticles synergize with substrate mechanics to improve dental pulp stem cells proliferation and differentiation. Mater. Sci. Eng. :C 2021, 118, 111366.

[31]

Kantovitz, K. R.; Fernandes, F. P.; Feitosa, I. V.; Lazzarini, M. O.; Denucci, G. C.; Gomes, O. P.; Giovani, P. A.; Moreira, K. M. S.; Pecorari, V. G. A.; Borges, A. F. S. et al. TiO2 nanotubes improve physico-mechanical properties of glass ionomer cement. Dent. Mater. 2020, 36, e85–e92.

[32]

Wang, M. H.; Wang, Q.; Wang, K. F.; Lu, X. Functionalized TiO2 surfaces facilitate selective receptor-recognition and modulate biological function of bone morphogenetic protein-2. J. Phys. Chem. C 2018, 122, 29319–29329.

[33]

Xiang, G. L.; Tang, Y.; Liu, Z. G.; Zhu, W.; Liu, H. T.; Wang, J. O.; Zhong, G. M.; Li, J.; Wang, X. Probing ligand-induced cooperative orbital redistribution that dominates nanoscale molecule–surface interactions with one-unit-thin TiO2 nanosheets. Nano Lett. 2018, 18, 7809–7815.

[34]

Xiang, G. L.; Wang, Y. G. Exploring electronic-level principles how size reduction enhances nanomaterial surface reactivity through experimental probing and mathematical modeling. Nano Res. 2022, 15, 3812–3817.

[35]

Ma, S. Q.; Zhao, W. X.; Zhou, J.; Wang, J. O.; Chu, S. Q.; Liu, Z. G.; Xiang, G. L. A new type of noncovalent surface–π stacking interaction occurring on peroxide-modified titania nanosheets driven by vertical π-state polarization. Chem. Sci. 2021, 12, 4411–4417.

[36]

Yamauchi, S.; Wang, X.; Egusa, H.; Sun, J. High-performance dental adhesives containing an ether-based monomer. J. Dent. Res. 2020, 99, 189–195.

[37]

Bendary, I. M.; Garcia, I. M.; Collares, F. M.; Takimi, A.; Samuel, S. M. W.; Leitune, V. C. B. Wollastonite as filler of an experimental dental adhesive. J. Dent. 2020, 102, 103472.

[38]

Montoya, C.; Jain, A.; Londoño, J. J.; Correa, S.; Lelkes, P. I.; Melo, M. A.; Orrego, S. Multifunctional dental composite with piezoelectric nanofillers for combined antibacterial and mineralization effects. ACS Appl. Mater. Interfaces 2021, 13, 43868–43879.

[39]

Cadenaro, M.; Maravic, T.; Comba, A.; Mazzoni, A.; Fanfoni, L.; Hilton, T.; Ferracane, J.; Breschi, L. The role of polymerization in adhesive dentistry. Dent Mater. 2019, 35, e1–e22.

[40]

Ye, K.; Wang, X.; Cao, L. P.; Li, S. Y.; Li, Z. H.; Yu, L.; Ding, J. D. Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett. 2015, 15, 4720–4729.

[41]

Martos, R.; Hegedüs, V.; Szalóki, M.; Blum, I. R.; Lynch, C. D.; Hegedüs, C. A randomised controlled study on the effects of different surface treatments and adhesive self-etch functional monomers on the immediate repair bond strength and integrity of the repaired resin composite interface. J. Dent. 2019, 85, 57–63.

[42]

Yao, C. M.; Ahmed, M. H.; Li, X.; Nedeljkovic, I.; Vandooren, J.; Mercelis, B.; Zhang, F.; Van Landuyt, K. L.; Huang, C.; Van Meerbeek, B. Zinc-calcium-fluoride bioglass-based innovative multifunctional dental adhesive with thick adhesive resin film thickness. ACS Appl. Mater. Interfaces 2020, 12, 30120–30135.

[43]

Yu, F.; Xu, R. C.; Huang, L.; Luo, M. L.; Li, J.; Tay, F. R.; Niu, L. N.; Chen, J. H. Isocyanate-terminated urethane-based methacrylate for in situ collagen scaffold modification. Mater. Sci. Eng. :C 2020, 112, 110902.

[44]

Chen, K.; Tang, X. K.; Jia, B. B.; Chao, C. Z.; Wei, Y.; Hou, J. Y.; Dong, L. T.; Deng, X. L.; Xiao, T. H.; Goda, K. et al. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat. Mater. 2022, 21, 1121–1129.

[45]

Hosseinpour, S.; Tang, F. J.; Wang, F. L.; Livingstone, R. A.; Schlegel, S. J.; Ohto, T.; Bonn, M.; Nagata, Y.; Backus, E. H. G. Chemisorbed and physisorbed water at the TiO2/water interface. J. Phys. Chem. Lett. 2017, 8, 2195–2199.

[46]

Yoshimitsu, Z.; Nakajima, A.; Watanabe, T.; Hashimoto, K. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 2002, 18, 5818–5822.

[47]

Shakir, M.; Jolly, R.; Khan, A. A.; Ahmed, S. S.; Alam, S.; Rauf, M. A.; Owais, M.; Farooqi, M. A. Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering. Carbohydr. Polym. 2018, 179, 317–327.

[48]

Chen, L.; Suh, B. I. Cytotoxicity and biocompatibility of resin-free and resin-modified direct pulp capping materials: A state-of-the-art review. Dent. Mater. J. 2017, 36, 1–7.

[49]

Garcia, I. M.; Balhaddad, A. A.; Lan, Y. C.; Simionato, A.; Ibrahim, M. S.; Weir, M. D.; Masri, R.; Xu, H. H. K.; Collares, F. M.; Melo, M. A. S. Magnetic motion of superparamagnetic iron oxide nanoparticles-loaded dental adhesives: Physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomater. 2021, 134, 337–347.

[50]

Di Cio, S.; Gautrot, J. E. Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype. Acta Biomater. 2016, 30, 26–48.

[51]

Cui, Y. D.; Hameed, F. M.; Yang, B.; Lee, K.; Pan, C. Q.; Park, S.; Sheetz, M. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 2015, 6, 6333.

[52]

Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011, 29, 739–767.

[53]

Martins, J. G.; Camargo, S. E. A.; Bishop, T. T.; Popat, K. C.; Kipper, M. J.; Martins, A. F. Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohydr. Polym. 2018, 197, 47–56.

[54]

Lee, W. A.; Pernodet, N.; Li, B. Q.; Lin, C. H.; Hatchwell, E.; Rafailovich, M. H. Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles. Chem. Commun. 2007, 4815–4817.

[55]

Vevers, W. F.; Jha, A. N. Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 2008, 17, 410–420.

[56]

Park, E. J.; Yi, J.; Chung, K. H.; Ryu, D. Y.; Choi, J.; Park, K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008, 180, 222–229.

[57]

Feng, Q.; Gao, H. C.; Wen, H. J.; Huang, H. H.; Li, Q. T.; Liang, M. H.; Liu, Y.; Dong, H. Cao, X. D. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis:Insights from a microgel model. Acta Biomater. 2020, 113, 393–406.

[58]

Liu, Y. H.; Zhu, Z.; Pei, X. B.; Zhang, X.; Cheng, X. T.; Hu, S. S.; Gao, X. M.; Wang, J.; Chen, J. Y.; Wan, Q. B. ZIF-8-modified multifunctional bone-adhesive hydrogels promoting angiogenesis and osteogenesis for bone regeneration. ACS Appl. Mater. Interfaces 2020, 12, 36978–36995.

[59]

Li, J.; Yan, J. F.; Wan, Q. Q.; Shen, M. J.; Ma, Y. X.; Gu, J. T.; Gao, P.; Tang, X. Y.; Yu, F.; Chen, J. H. et al. Matrix stiffening by self-mineralizable guided bone regeneration. Acta Biomater. 2021, 125, 112–125.

[60]

Majidinia, M.; Sadeghpour, A.; Yousefi, B. The roles of signaling pathways in bone repair and regeneration. J. Cell. Physiol. 2018, 233, 2937–2948.

[61]

Yu, W. Q.; Qian, C.; Jiang, X. Q.; Zhang, F. Q.; Weng, W. M. Mechanisms of stem cell osteogenic differentiation on TiO2 nanotubes. Colloids Surf. B: Biointerfaces 2015, 136, 779–785.

[62]

De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A critical review of the durability of adhesion to tooth tissue: Methods and results. J. Dent. Res. 2005, 84, 118–132.

[63]

Freitas, P. H.; André, C. B.; Fronza, B. M.; Giannini, M.; Rosalen, P. L.; Consani, S.; França, R. Physicochemical properties, metalloproteinases inhibition, and antibiofilm activity of doxycycline-doped dental adhesive. J. Dent. 2021, 104, 103550.

[64]

Shoulders, M. D.; Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958.

[65]

Yu, F.; Luo, M. L.; Xu, R. C.; Huang, L.; Yu, H. H.; Meng, M.; Jia, J. Q.; Hu, Z. H.; Wu, W. Z.; Tay, F. R. et al. A novel dentin bonding scheme based on extrafibrillar demineralization combined with covalent adhesion using a dry-bonding technique. Bioact. Mater. 2021, 6, 3557–3567.

[66]

Cai, X.; Wang, X. Y. Chlorhexidine-loaded poly(amido amine) dendrimer and a dental adhesive containing amorphous calcium phosphate nanofillers for enhancing bonding durability. Dent. Mater. 2022, 38, 824–834.

File
12274_2022_5153_MOESM1_ESM.pdf (619.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 August 2022
Revised: 30 September 2022
Accepted: 03 October 2022
Published: 05 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82001110, 82071154, 21801012, 81720108011, 81470773, and 81571013).

Return