Journal Home > Volume 16 , Issue 4

The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale

Show Author's information Alevtina Smekhova1( )Alexei Kuzmin2Konrad Siemensmeyer1Chen Luo1,3James Taylor1,3Sangeeta Thakur4Florin Radu1Eugen Weschke1Ana Guilherme Buzanich5Bin Xiao6Alan Savan6Kirill V. Yusenko5Alfred Ludwig6
Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Berlin D-12489, Germany
Institute of Solid State Physics, University of Latvia, Riga LV-1063, Latvia
Physik-Department, Technische Universität München, Garching D-85748, Germany
Institut für Experimentalphysik, Freie Universität Berlin, Berlin 14195, Germany
Bundesanstalt für Materialforschung und-prüfung (BAM), Berlin D-12489, Germany
Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum D-44801, Germany

Abstract

The huge atomic heterogeneity of high-entropy materials along with a possibility to unravel the behavior of individual components at the atomic scale suggests a great promise in designing new compositionally complex systems with the desired multi-functionality. Herein, we apply multi-edge X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and X-ray magnetic circular dichroism (XMCD)) to probe the structural, electronic, and magnetic properties of all individual constituents in the single-phase face-centered cubic (fcc)-structured nanocrystalline thin film of Cr20Mn26Fe18Co19Ni17 (at.%) high-entropy alloy on the local scale. The local crystallographic ordering and component-dependent lattice displacements were explored within the reverse Monte Carlo approach applied to EXAFS spectra collected at the K absorption edges of several constituents at room temperature. A homogeneous short-range fcc atomic environment around the absorbers of each type with very similar statistically averaged interatomic distances (2.54–2.55 Å) to their nearest-neighbors and enlarged structural relaxations of Cr atoms were revealed. XANES and XMCD spectra collected at the L2,3 absorption edges of all principal components at low temperature from the oxidized and in situ cleaned surfaces were used to probe the oxidation states, the changes in the electronic structure, and magnetic behavior of all constituents at the surface and in the sub-surface volume of the film. The spin and orbital magnetic moments of Fe, Co, and Ni components were quantitatively evaluated. The presence of magnetic phase transitions and the co-existence of different magnetic phases were uncovered by conventional magnetometry in a broad temperature range.

Keywords: magnetism, X-ray magnetic circular dichroism (XMCD), high-entropy alloys, element-specific spectroscopy, extended X-ray absorption fine structure (EXAFS), reverse Monte Carlo (RMC)

References(84)

[1]

Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. 2004, 375–377, 213–218.

[2]

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

[3]

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

[4]

Sarkar, A.; Wang, Q. S.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236.

[5]

Albedwawi, S. H.; AlJaberi, A.; Haidemenopoulos, G. N.; Polychronopoulou, K. High entropy oxides-exploring a paradigm of promising catalysts: A review. Mater. Des. 2021, 202, 109534.

[6]

Ma, Y. J.; Ma, Y.; Wang, Q. S.; Schweidler, S.; Botros, M.; Fu, T. T.; Hahn, H.; Brezesinski, T.; Breitung, B. High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 2021, 14, 2883–2905.

[7]

Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 2013, 61, 4887–4897.

[8]

Kao, Y. F.; Chen, S. K.; Sheu, J. H.; Lin, J. T.; Lin, W. E.; Yeh, J. W.; Lin, S. J.; Liou, T. H.; Wang, C. W. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. Int. J. Hydrogen Energy 2010, 35, 9046–9059.

[9]

Sahlberg, M.; Karlsson, D.; Zlotea, C.; Jansson, U. Superior hydrogen storage in high entropy alloys. Sci. Rep. 2016, 6, 36770.

[10]

Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

[11]

Löffler, T.; Savan, A.; Meyer, H.; Meischein, M.; Strotkötter, V.; Ludwig, A.; Schuhmann, W. Design of complex solid-solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angew. Chem., Int. Ed. 2020, 59, 5844–5850.

[12]

Yao, Y. G.; Huang, Z. N.; Li, T. Y.; Wang, H.; Liu, Y. F.; Stein, H. S.; Mao, Y. M.; Gao, J. L.; Jiao, M. L.; Dong, Q. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. USA 2020, 117, 6316–6322.

[13]

Pickering, E. J.; Carruthers, A. W.; Barron, P. J.; Middleburgh, S. C.; Armstrong, D. E. J.; Gandy, A. S. High-entropy alloys for advanced nuclear applications. Entropy 2021, 23, 98.

[14]

Löffler, T.; Meyer, H.; Savan, A.; Wilde, P.; Garzón Manjón, A.; Chen, Y. T.; Ventosa, E.; Scheu, C.; Ludwig, A.; Schuhmann, W. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 2018, 8, 1802269.

[15]

Fang, G.; Gao, J. J.; Lv, J.; Jia, H. L.; Li, H. L.; Liu, W. H.; Xie, G. Q.; Chen, Z. H.; Huang, Y.; Yuan, Q. H. et al. Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2020, 268, 118431.

[16]

Kong, K.; Hyun, J.; Kim, Y.; Kim, W.; Kim, D. Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode. J. Power Sources 2019, 437, 226927.

[17]

Xu, X.; Du, Y. K.; Wang, C. H.; Guo, Y.; Zou, J. W.; Zhou, K.; Zeng, Z.; Liu, Y. Y.; Li, L. Q. High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors. J. Alloys Compd. 2020, 822, 153642.

[18]

Ahmad, A. S.; Su, Y.; Liu, S. Y.; Ståhl, K.; Wu, Y. D.; Hui, X. D.; Ruett, U.; Gutowski, O.; Glazyrin, K.; Liermann, H. P. et al. Structural stability of high entropy alloys under pressure and temperature. J. Appl. Phys. 2017, 121, 235901.

[19]

Zaddach, A. J.; Niu, C.; Koch, C. C.; Irving, D. L. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 2013, 65, 1780–1789.

[20]

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

[21]

Schuh, B.; Mendez-Martin, F.; Völker, B.; George, E. P.; Clemens, H.; Pippan, R.; Hohenwarter, A. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015, 96, 258–268.

[22]

Huang, S.; Li, W.; Lu, S.; Tian, F. Y.; Shen, J.; Holmström, E.; Vitos, L. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 2015, 108, 44–47.

[23]

Varvenne, C.; Luque, A.; Curtin, W. A. Theory of strengthening in fcc high entropy alloys. Acta Mater. 2016, 118, 164–176.

[24]

Wang, B. F.; Fu, A.; Huang, X. X.; Liu, B.; Liu, Y.; Li, Z. Z.; Zan, X. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression. J. Mater. Eng. Perform. 2016, 25, 2985–2992.

[25]

Durand, A.; Peng, L.; Laplanche, G.; Morris, J. R.; George, E. P.; Eggeler, G. Interdiffusion in Cr-Fe-Co-Ni medium-entropy alloys. Intermetallics 2020, 122, 106789.

[26]

Luo, H.; Li, Z. M.; Mingers, A. M.; Raabe, D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 2018, 134, 131–139.

[27]

Shi, Y. Z.; Collins, L.; Feng, R.; Zhang, C.; Balke, N.; Liaw, P. K.; Yang, B. Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 2018, 133, 120–131.

[28]

Zhu, M.; Zhao, B. Z.; Yuan, Y. F.; Guo, S. Y.; Wei, G. Y. Study on corrosion behavior and mechanism of CoCrFeMnNi HEA interfered by AC current in simulated alkaline soil environment. J. Electroanal. Chem. 2021, 882, 115026.

[29]

Zhang, Y. W.; Zhao, S. J.; Weber, W. J.; Nordlund, K.; Granberg, F.; Djurabekova, F. Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Curr. Opin. Solid State Mater. Sci. 2017, 21, 221–237.

[30]

Bracq, G.; Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Joubert, J. M.; Guillot, I. The fcc solid solution stability in the Co-Cr-Fe-Mn-Ni multi-component system. Acta Mater. 2017, 128, 327–336.

[31]

Laurent-Brocq, M.; Perrière, L.; Pirès, R.; Prima, F.; Vermaut, P.; Champion, Y. From diluted solid solutions to high entropy alloys: On the evolution of properties with composition of multi-components alloys. Mater. Sci. Eng. A 2017, 696, 228–235.

[32]

Wu, Z.; Bei, H.; Otto, F.; Pharr, G. M.; George, E. P. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 2014, 46, 131–140.

[33]

Billington, D.; James, A. D. N.; Harris-Lee, E. I.; Lagos, D. A.; O’Neill, D.; Tsuda, N.; Toyoki, K.; Kotani, Y.; Nakamura, T.; Bei, H. et al. Bulk and element-specific magnetism of medium-entropy and high-entropy Cantor-Wu alloys. Phys. Rev. B 2020, 102, 174405.

[34]

Kao, Y. F.; Chen, S. K.; Chen, T. J.; Chu, P. C.; Yeh, J. W.; Lin, S. J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 2011, 509, 1607–1614.

[35]

Jasiewicz, K.; Cieslak, J.; Kaprzyk, S.; Tobola, J. Relative crystal stability of AlxFeNiCrCo high entropy alloys from XRD analysis and formation energy calculation. J. Alloys Compd. 2015, 648, 307–312.

[36]

Yusenko, K. V.; Riva, S.; Crichton, W. A.; Spektor, K.; Bykova, E.; Pakhomova, A.; Tudball, A.; Kupenko, I.; Rohrbach, A.; Klemme, S. et al. High-pressure high-temperature tailoring of high entropy alloys for extreme environments. J. Alloys Compd. 2018, 738, 491–500.

[37]

Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Luo, C.; Chen, K.; Radu, F.; Weschke, E.; Reinholz, U.; Buzanich, A. G.; Yusenko, K. V. Al-driven peculiarities of local coordination and magnetic properties in single-phase Alx-CrFeCoNi high-entropy alloys. Nano Res. 2022, 15, 4845–4858.

[38]

Čižek, L.; Kratochvíl, P.; Smola, B. Solid solution hardening of copper crystals. J. Mater. Sci. 1974, 9, 1517–1520.

[39]

Gypen, L. A.; Deruyttere, A. Multi-component solid solution hardening. J. Mater. Sci. 1977, 12, 1028–1033.

[40]

Ma, D. C.; Grabowski, B.; Körmann, F.; Neugebauer, J.; Raabe, D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 2015, 100, 90–97.

[41]
Tong, Y. ; Velisa, G. ; Yang, T. ; Jin, K. ; Lu, C. ; Bei, H. ; Ko, J. Y. P. ; Pagan, D. C. ; Huang, R. ; Zhang, Y. et al. Probing local lattice distortion in medium- and high-entropy alloys. 2017, arXiv:1707.07745. arXiv.org e-Print archive. https://arxiv.org/abs/1707.07745 (accessed Apr 1, 2022).
[42]

Okamoto, N. L.; Yuge, K.; Tanaka, K.; Inui, H.; George, E. P. Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening. AIP Adv. 2016, 6, 125008.

[43]

Zhang, F. X.; Tong, Y.; Jin, K.; Bei, H. B.; Weber, W. J.; Huq, A.; Lanzirotti, A.; Newville, M.; Pagan, D. C.; Ko, J. Y. P. et al. Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy. Mater. Res. Lett. 2018, 6, 450–455.

[44]

Ding, Q. Q.; Zhang, Y.; Chen, X.; Fu, X. Q.; Chen, D. K.; Chen, S. J.; Gu, L.; Wei, F.; Bei, H. B.; Gao, Y. F. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227.

[45]

Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater. Sci. 2021, 120, 100754.

[46]

Oh, H. S.; Odbadrakh, K.; Ikeda, Y.; Mu, S.; Körmann, F.; Sun, C. J.; Ahn, H. S.; Yoon, K. N.; Ma, D. C.; Tasan, C. C. et al. Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects. Acta Mater. 2021, 216, 117135.

[47]

Guo, S.; Ng, C.; Lu, J.; Liu, C. T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505.

[48]

Zhang, R. P.; Zhao, S. T.; Ding, J.; Chong, Y.; Jia, T.; Ophus, C.; Asta, M.; Ritchie, R. O.; Minor, A. M. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 2020, 581, 283–287.

[49]

He, Q. F.; Tang, P. H.; Chen, H. A.; Lan, S.; Wang, J. G.; Luan, J. H.; Du, M.; Liu, Y.; Liu, C. T.; Pao, C. W. et al. Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys. Acta Mater. 2021, 216, 117140.

[50]

Oh, H. S.; Ma, D. C.; Leyson, G. P.; Grabowski, B.; Park, E. S.; Körmann, F.; Raabe, D. Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 2016, 18, 321.

[51]

Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Abrudan, R.; Reinholz, U.; Buzanich, A. G.; Schneider, M.; Laplanche, G.; Yusenko, K. V. Inner relaxations in equiatomic single-phase high-entropy cantor alloy. J. Alloys Compd. 2022, 920, 165999.

[52]

Fantin, A.; Lepore, G. O.; Manzoni, A. M.; Kasatikov, S.; Scherb, T.; Huthwelker, T.; d’Acapito, F.; Schumacher, G. Short-range chemical order and local lattice distortion in a compositionally complex alloy. Acta Mater. 2020, 193, 329–337.

[53]

Schneeweiss, O.; Friák, M.; Dudová, M.; Holec, D.; Šob, M.; Kriegner, D.; Holý, V.; Beran, P.; George, E. P.; Neugebauer, J. et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 2017, 96, 014437.

[54]

Sarkar, A.; Eggert, B.; Witte, R.; Lill, J.; Velasco, L.; Wang, Q. S.; Sonar, J.; Ollefs, K.; Bhattacharya, S. S.; Brand, R. A. et al. Comprehensive investigation of crystallographic, spin-electronic and magnetic structure of (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4: Unraveling the suppression of configuration entropy in high entropy oxides. Acta Mater. 2022, 226, 117581.

[55]

Timoshenko, J.; Keller, K. R.; Frenkel, A. I. Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with X-ray absorption spectroscopy. J. Chem. Phys. 2017, 146, 114201.

[56]

Timoshenko, J.; Jeon, H. S.; Sinev, I.; Haase, F. T.; Herzog, A.; Roldan Cuenya, B. Linking the evolution of catalytic properties and structural changes in copper-zinc nanocatalysts using operando EXAFS and neural-networks. Chem. Sci. 2020, 11, 3727–3736.

[57]
Stöhr, J.; Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics; Springer: Berlin, 2006.
[58]

Lucas, M. S.; Mauger, L.; Muñoz, J. A.; Xiao, Y. M.; Sheets, A. O.; Semiatin, S. L.; Horwath, J.; Turgut, Z. Magnetic and vibrational properties of high-entropy alloys. J. Appl. Phys. 2011, 109, 07E307.

[59]

Körmann, F.; Ma, D.; Belyea, D. D.; Lucas, M. S.; Miller, C. W.; Grabowski, B.; Sluiter, M. H. F. “Treasure maps” for magnetic high-entropy-alloys from theory and experiment. Appl. Phys. Lett. 2015, 107, 142404.

[60]

Riesemeier, H.; Ecker, K.; Görner, W.; Müller, B. R.; Radtke, M.; Krumrey, M. Layout and first XRF applications of the BAMline at BESSY II. X-Ray Spectrom. 2005, 34, 160–163.

[61]

Lutz, C.; Hampel, S.; Ke, X.; Beuermann, S.; Turek, T.; Kunz, U.; Guilherme Buzanich, A.; Radtke, M.; Fittschen, U. E. A. Evidence for redox reactions during vanadium crossover inside the nanoscopic water-body of Nafion 117 using X-ray absorption near edge structure spectroscopy. J. Power Sources 2021, 483, 229176.

[62]

Timoshenko, J.; Kuzmin, A.; Purans, J. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comput. Phys. Commun. 2012, 183, 1237–1245.

[63]

Timoshenko, J.; Kuzmin, A.; Purans, J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys. Condens. Matter 2014, 26, 055401.

[64]

Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 2009, 180, 920–925.

[65]

Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 2014, 1, 571–589.

[66]
XAESA, v0.06; GitHub: 2022 [Online]. https://github.com/aklnk/xaesa (accessed Nov 1, 2020).
[67]

Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real space multiple-scattering calculation and interpretation of X-ray absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.

[68]

Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

[69]

Englisch, U.; Rossner, H.; Maletta, H.; Bahrdt, J.; Sasaki, S.; Senf, F.; Sawhney, K. J. S.; Gudat, W. The elliptical undulator UE46 and its monochromator beam-line for structural research on nanomagnets at BESSY-II. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 2001, 467–468, 541–544.

[70]

Schmitz, D.; Rossner, H.; Imperia, P.; Maletta, H.; Bahrdt, J.; Follath, R.; Frentrup, W.; Gaupp, A.; Holldack, K.; Mertins, H. C. et al. Commissioning results of the UE46-PGM beamline. BESSY Annual Report. 2002, 358–361.

[71]
Noll, T.; Radu, F. The mechanics of the vekmag experiment. In Proceedings of the 9th Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (MEDSI’16), Barcelona, Spain, 2017, pp 370–373.
[72]

Li, Y. J.; Kostka, A.; Savan, A.; Ludwig, A. Atomic-scale investigation of fast oxidation kinetics of nanocrystalline CrMnFeCoNi thin films. J. Alloys Compd. 2018, 766, 1080–1085.

[73]

Hobbs, D.; Hafner, J.; Spišák, D. Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn. Phys. Rev. B 2003, 68, 014407.

[74]

Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; Hurt III, J. W.; LeBeau, J. M.; Koch, C. C.; Irving, D. L. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo. Appl. Phys. Lett. 2015, 106, 161906.

[75]

Lee, C. H.; Chin, H. H.; Zeng, K. Y.; Chang, Y. J.; Yeh, A. C.; Yeh, J. W.; Lin, S. J.; Wang, C. C.; Glatzel, U.; Huang, E. W. Tailoring ferrimagnetic transition temperatures, coercivity fields, and saturation magnetization by modulating Mn concentration in (CoCrFeNi)1−xMnx high-entropy alloys. Front. Mater. 2022, 9, 824285.

[76]

Nascimento, C. B.; Donatus, U.; Ríos, C. T.; Antunes, R. A. Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution. J. Mater. Res. Technol. 2020, 9, 13879–13892.

[77]

Shi, Y. Z.; Yang, B.; Rack, P. D.; Guo, S. F.; Liaw, P. K.; Zhao, Y. High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx(CoCrFeNi)100−x combinatorial high-entropy alloys. Mater. Des. 2020, 195, 109018.

[78]

Mitra, C.; Hu, Z.; Raychaudhuri, P.; Wirth, S.; Csiszar, S. I.; Hsieh, H. H.; Lin, H. J.; Chen, C. T.; Tjeng, L. H. Direct observation of electron doping in La0.7Ce0.3MnO3 using X-ray absorption spectroscopy. Phys. Rev. B 2003, 67, 092404.

[79]

Cramer, S. P.; DeGroot, F. M. F.; Ma, Y.; Chen, C. T.; Sette, F.; Kipke, C. A.; Eichhorn, D. M.; Chan, M. K.; Armstrong, W. H.; Libby, E. et al. Ligand field strengths and oxidation states from manganese L-edge spectroscopy. J. Am. Chem. Soc. 1991, 113, 7937–7940.

[80]

Thole, B. T.; Carra, P.; Sette, F.; van der Laan, G. X-ray circular dichroism as a probe of orbital magnetization. Phys. Rev. Lett. 1992, 68, 1943–1946.

[81]

Carra, P.; Thole, B. T.; Altarelli, M.; Wang, X. D. X-ray circular dichroism and local magnetic fields. Phys. Rev. Lett. 1993, 70, 694–697.

[82]

Mu, S.; Samolyuk, G. D.; Wimmer, S.; Troparevsky, M. C.; Khan, S. N.; Mankovsky, S.; Ebert, H.; Stocks, G. M. Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys. npj Comput. Mater. 2019, 5, 1.

[83]
Scherz, A. Spin-dependent X-ray absorption spectroscopy of 3d transition metals: Systematics and applications. Ph.D. Dissertation, Freie University Berlin, Berlin, Germany, 2003.
[84]

Jin, K.; Sales, B. C.; Stocks, G. M.; Samolyuk, G. D.; Daene, M.; Weber, W. J.; Zhang, Y.; Bei, H. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 2016, 6, 20159.

File
12274_2022_5135_MOESM1_ESM.pdf (464.3 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 July 2022
Revised: 20 September 2022
Accepted: 29 September 2022
Published: 15 February 2023
Issue date: April 2023

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

The authors thank the Helmholtz-Zentrum Berlin for the provision of access to synchrotron radiation facilities and allocation of synchrotron radiation at the BAMline, UE46_PGM-1, and VEKMAG beamlines of BESSY II at HZB. The measurement time for magnetometry studies at the HZB CoreLab for Quantum Materials is acknowledged as well. The financial support for the VEKMAG project and the PM2-VEKMAG beamline by the German Federal Ministry for Education and Research (BMBF # 05K10PC2, # 05K10WR1, # 05K10KE1, and # 05K19KEA) and by HZB is cordially acknowledged by all co-authors. Steffen Rudorff is acknowledged for technical support. A. Sm. also acknowledges personal funding from CALIPSOplus project (the Grant Agreement No. 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020). Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. B. X., A. S. and A. L. thank the DFG for financial support within the projects DE 796/11–1 and LU1175/22–1.

Rights and permissions

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return