Journal Home > Volume 16 , Issue 10

The performance of lithium-sulfur battery is restricted by the lower value of electrode conductance and the sluggish LiPSs degradation kinetics. Unfortunately, the degradation rate of polysulfides was mostly attributed to the catalytic energy barrier in previous, which is unable to give accurate predictions on the performance of lithium-sulfur battery. Thereby, a quantitative framework relating the battery performance to catalytic energy barrier and electrical conductivity of the cathode host is developed here to quantitate the tendency. As the model compound, calculated-Ti4O7 (c-Ti4O7) has the highest comprehensive index with excellent electrical conductivity, although the catalytic energy barrier is not ideal. Through inputting the experimental properties such as impedance and charge/discharge data into the as-build model, the final conclusion is still in line with our prediction that Ti4O7 host shows the most excellent electrochemical performance. Therefore, the accurate model here would be attainable to design lithium-sulfur cathode materials with a bottom–up manner.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Theoretical kinetic quantitative calculation predicted the expedited polysulfides degradation

Show Author's information Siyu Zhang1Xianchao Rong1Tao Li2Wenjie Ren1Hao Ren1( )Linjie Zhi1Mingbo Wu1( )Zhongtao Li1( )
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
National Engineering Center of Coal slurry and Coal Chemical Co., Ltd., LTD, Jinan 250014, China

Abstract

The performance of lithium-sulfur battery is restricted by the lower value of electrode conductance and the sluggish LiPSs degradation kinetics. Unfortunately, the degradation rate of polysulfides was mostly attributed to the catalytic energy barrier in previous, which is unable to give accurate predictions on the performance of lithium-sulfur battery. Thereby, a quantitative framework relating the battery performance to catalytic energy barrier and electrical conductivity of the cathode host is developed here to quantitate the tendency. As the model compound, calculated-Ti4O7 (c-Ti4O7) has the highest comprehensive index with excellent electrical conductivity, although the catalytic energy barrier is not ideal. Through inputting the experimental properties such as impedance and charge/discharge data into the as-build model, the final conclusion is still in line with our prediction that Ti4O7 host shows the most excellent electrochemical performance. Therefore, the accurate model here would be attainable to design lithium-sulfur cathode materials with a bottom–up manner.

Keywords: lithium-sulfur batteries, first-principles calculation, shuttle effect, polysulfide degradation, semi-empirical model

References(49)

[1]

Service, R. F. Lithium-sulfur batteries poised for leap. Science 2018, 359, 1080–1081.

[2]

Ruan, J. F.; Sun, H.; Song, Y.; Pang, Y. P.; Yang, J. H.; Sun, D. L.; Zheng, S. Y. Constructing 1D/2D interwoven carbonous matrix toenable high-efficiency sulfur immobilization in Li-S battery. Energy Mater. 2021, 1, 100018.

[3]

Castillo, J.; Qiao, L. X.; Santiago, A.; Judez, X.; de Buruaga, A. S.; Jiménez-Martín, G.; Armand, M.; Zhang, H.; Li, C. M. Perspective of polymer-based solid-state Li-S batteries. Energy Mater. 2022, 2, 200003.

[4]

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

[5]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[6]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[7]

Boyjoo, Y.; Shi, H. D.; Tian, Q.; Liu, S. M.; Liang, J.; Wu, Z. S.; Jaroniec, M.; Liu, J. Engineering nanoreactors for metal-chalcogen batteries. Energy Environ. Sci. 2021, 14, 540–575.

[8]

Shi, H. D.; Dong, Y. F.; Zhou, F.; Chen, J.; Wu, Z. S. 2D hybrid interlayer of electrochemically exfoliated graphene and Co(OH)2 nanosheet as a bi-functionalized polysulfide barrier for high-performance lithium-sulfur batteries. J. Phys. Energy 2019, 1, 015002.

[9]

Sun, L.; Liu, Y. X.; Zhang, K. Q.; Cheng, F.; Jiang, R. Y.; Liu, Y. Q.; Zhu, J.; Jin, Z.; Pang, H. Rapid construction of highly-dispersed cobalt nanoclusters embedded in hollow cubic carbon walls as an effective polysulfide promoter in high-energy lithium-sulfur batteries. Nano Res. 2022, 15, 5105–5113.

[10]

Li, Z. F.; Wu, J. Y.; Chen, P. P.; Zeng, Q. H.; Wen, X.; Wen, W.; Liu, Y.; Chen, A. Q.; Guan, J. Z.; Liu, X. et al. A new metallic composite cathode originated from hyperbranched polymer coated MOF for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 435, 135125.

[11]

Xue, Y. F.; Luo, D.; Yang, N.; Ma, G.; Zhang, Z.; Hou, J. F.; Wang, J. T.; Ma, C. Y.; Wang, X.; Jin, M. L. et al. Engineering checkerboard-like heterostructured sulfur electrocatalyst towards high-performance lithium sulfur batteries. Chem. Eng. J. 2022, 440, 135990.

[12]

Ma, G.; Yang, N.; Zhou, G. F.; Wang, X. The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction. Nano Res. 2022, 15, 1934–1941.

[13]

Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

[14]

Fan, L. L.; Li, M.; Li, X. F.; Xiao, W.; Chen, Z. W.; Lu, J. Interlayer material selection for lithium-sulfur batteries. Joule 2019, 3, 361–386.

[15]

Zhao, Y.; Liu, J. F.; Zhou, Y.; Huang, X. F.; Liu, Q. Q.; Chen, F. M.; Qin, H. Q.; Lou, H. T.; Yu, D. Y. W.; Hou, X. H. Defect-rich amorphous iron-based oxide/graphene hybrid-modified separator toward the efficient capture and catalysis of polysulfides. ACS Appl. Mater. Interfaces 2021, 13, 41698–41706.

[16]

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

[17]

Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.

[18]

Paul, P.; Liu, P. Q. Dynamically reconfigurable bipolar optical gradient force induced by mid-infrared graphene plasmonic tweezers for sorting dispersive nanoscale objects. Adv. Opt. Mater. 2022, 10, 2101744.

[19]

He, J. R.; Hartmann, G.; Lee, M.; Hwang, G. S.; Chen, Y. F.; Manthiram, A. Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 2019, 12, 344–350.

[20]

Shi, H. D.; Qin, J. Q.; Lu, P. F.; Dong, C.; He, J.; Chou, X. J.; Das, P.; Wang, J. M.; Zhang, L. Z.; Wu, Z. S. Interfacial engineering of bifunctional niobium (V)-based heterostructure nanosheet toward high efficiency lean-electrolyte lithium-sulfur full batteries. Adv. Funct. Mater. 2021, 31, 2102314.

[21]

Yan, W. Q.; Yang, J. L.; Xiong, X. S.; Fu, L. J.; Chen, Y. H.; Wang, Z. G.; Zhu, Y. S.; Zhao, J. W.; Wang, T.; Wu, Y. P. Versatile asymmetric separator with dendrite-free alloy anode enables high-performance Li-S batteries. Adv. Sci. 2022, 9, 2202204.

[22]

Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Zaccaria, R. P. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

[23]

Kumaresan, K.; Mikhaylik, Y.; White, R. E. A mathematical model for a lithium-sulfur cell. J. Electrochem. Soc. 2008, 155, A576–A582.

[24]

Su, Y. S.; Fu, Y. Z.; Cochell, T.; Manthiram, A. A strategic approach to recharging lithium-sulphur batteries for long cycle life. Nat. Commun 2013, 4, 2985.

[25]

Tao, X. Y.; Wang, J. G.; Ying, Z. G.; Cai, Q. X.; Zheng, G. Y.; Gan, Y. P.; Huang, H.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Strong sulfur binding with conducting magnéli-phase TinO2n−1 nanomaterials for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5288–5294.

[26]

Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.

[27]

Song, J. J.; Guo, X.; Zhang, J. Q.; Chen, Y.; Zhang, C. Y.; Luo, L. Q.; Wang, F. Y.; Wang, G. X. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513.

[28]

Bizuneh, G. G.; Fan, J. M.; Xu, P.; Yuan, R. M.; Cao, L.; Zheng, M. S.; Dong, Q. F. Promoting the sulfur conversion kinetics via a solid auxiliary redox couple embedded in the cathode of Li-S batteries. Sustainable Energy Fuels 2020, 4, 3701–3711.

[29]

Pang, Q.; Liang, X.; Kwok, C. Y.; Kulisch, J.; Nazar, L. F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2017, 7, 1601630.

[30]

Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium-sulfur batteries. Nano Energy 2019, 60, 743–751.

[31]

Li, Y. Y.; Cai, Q. F.; Wang, L.; Li, Q. W.; Peng, X.; Gao, B.; Huo, K. F.; Chu, P. K. Mesoporous TiO2 nanocrystals/graphene as an efficient sulfur host material for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 23784–23792.

[32]

He, Q.; Yu, B.; Wang, H.; Rana, M.; Liao, X. B.; Zhao, Y. Oxygen defects boost polysulfides immobilization and catalytic conversion: First-principles computational characterization and experimental design. Nano Res. 2020, 13, 2299–2307.

[33]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[34]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[35]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[36]

Wu, Q.; Yang, W. T. Empirical correction to density functional theory for van der Waals interactions. J. Chem. Phys. 2002, 116, 515–524.

[37]

Yan, Y. C.; Chen, Z.; Yang, J.; Guan, L.; Hu, H.; Zhao, Q. S.; Ren, H.; Lin, Y.; Li, Z. T.; Wu, M. B. Controllable substitution of S radicals on triazine covalent framework to expedite degradation of polysulfides. Small 2020, 16, 2004631.

[38]

You, H. H.; Wu, D. S.; Si, D. H.; Cao, M. N.; Sun, F. F.; Zhang, H.; Wang, H. M.; Liu, T. F.; Cao, R. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254–9263.

[39]

Cai, Z. Y.; Wang, P.; Zhang, J. J.; Chen, A. Y.; Zhang, J. W.; Yan, Y.; Wang, X. Y. Reinforced layered double hydroxide oxygen-evolution electrocatalysts: A polyoxometallic acid wet-etching approach and synergistic mechanism. Adv. Mater. 2022, 34, 2110696.

[40]

Zhang, L. F.; Zhao, W. H.; Zhang, W. H.; Chen, J.; Hu, Z. P. Gt-C3N4 coordinated single atom as an efficient electrocatalyst for nitrogen reduction reaction. Nano Res. 2019, 12, 1181–1186.

[41]

Liu, S. S.; Wang, M. F.; Qian, T.; Ji, H. Q.; Liu, J.; Yan, C. L. Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 2019, 10, 3898.

[42]

Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

[43]

Mou, S. Y.; Wu, T. W.; Xie, J. F.; Zhang, Y.; Ji, L.; Huang, H.; Wang, T.; Luo, Y. L.; Xiong, X. L.; Tang, B. et al. Boron phosphide nanoparticles: A nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv. Mater. 2019, 31, 1903499.

[44]

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. C. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries. Nano Lett. 2020, 20, 1252–1261.

[45]

Lim, W. G.; Jo, C.; Cho, A.; Hwang, J.; Kim, S.; Han, J. W.; Lee, J. Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation. Adv. Mater. 2019, 31, 1806547.

[46]

Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

[47]

Park, J.; Kim, E. T.; Kim, C.; Pyun, J.; Jang, H. S.; Shin, J.; Choi, J. W.; Char, K.; Sung, Y. E. The importance of confined sulfur nanodomains and adjoining electron conductive pathways in subreaction regimes of Li-S batteries. Adv. Energy Mater. 2017, 7, 1700074.

[48]

Yang, X. F.; Yu, Y.; Yan, N.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. 1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 5965–5972.

[49]

Li, Y. J.; Fu, K. K.; Chen, C. J.; Luo, W.; Gao, T. T.; Xu, S. M.; Dai, J. Q.; Pastel, G.; Wang, Y. B.; Liu, B. Y. et al. Enabling high-areal-capacity lithium-sulfur batteries: Designing anisotropic and low-tortuosity porous architectures. ACS Nano 2017, 11, 4801–4807.

File
12274_2022_5061_MOESM1_ESM.pdf (891.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 August 2022
Revised: 11 September 2022
Accepted: 14 September 2022
Published: 12 November 2022
Issue date: October 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong, China (Nos. ZR2020JQ21 and ZR2021ZD24), the National Natural Science Foundation of China (Nos. 51873231 and 22138013), the Financial Support from Taishan Scholar Project (No. tsqn201909062), the Technology Foundation of Shandong Energy Group Co., LTD. (Nos. YKZB2020-176 and J2020004), and the Fundamental Research Funds for the Central Universities (No. 20CX05010A).

Return