Journal Home > Volume 16 , Issue 1

Interface regulation plays a key role in the electrochemical performance for biosensors. By controlling the interfacial interaction, the electronic structure of active species can be adjusted effectively at micro and nano-level, which results in the optimal reaction energy barrier. Herein, we propose an interface electronic engineering scheme to design a strongly coupled 1T phase molybdenum sulfide (1T-MoS2)/MXene hybrids for constructing an efficient electrocatalytic biomimetic sensor. The local electronic and atomic structures of the 1T-MoS2/Ti3C2TX are comprehensively studied by synchrotron radiation-based X-ray photoelectron spectroscopy (XPS), as well as X-ray absorption spectroscopy (XAS) at atomic level. Experiments and theoretical calculations show that there are interfacial stresses, atomic defects and adjustable bond-length between MoS2/MXene nanosheets, which can significantly promote biomolecular adsorption and rapid electron transfer to achieve excellent electrochemical activity and reaction kinetics. The 1T-MoS2/Ti3C2TX modified electrode shows ultra high sensitivity of 1.198 μA/μM for dopamine detection with low limit of 0.05 μM. We anticipate that the interface electronic engineering investigation could provide a basic idea for guiding the exploration of advanced biosensors with high sensitivity and low detection limit.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface electronic engineering of molybdenum sulfide/MXene hybrids for highly efficient biomimetic sensors

Show Author's information Pengfei Wu1Tingting You1Qingyuan Ren1Hongyan Xi1Qingqing Liu1Fengjuan Qin2Hongfei Gu2Yu Wang3Wensheng Yan4Yukun Gao1( )Wenxing Chen2( )Penggang Yin1( )
Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China

Abstract

Interface regulation plays a key role in the electrochemical performance for biosensors. By controlling the interfacial interaction, the electronic structure of active species can be adjusted effectively at micro and nano-level, which results in the optimal reaction energy barrier. Herein, we propose an interface electronic engineering scheme to design a strongly coupled 1T phase molybdenum sulfide (1T-MoS2)/MXene hybrids for constructing an efficient electrocatalytic biomimetic sensor. The local electronic and atomic structures of the 1T-MoS2/Ti3C2TX are comprehensively studied by synchrotron radiation-based X-ray photoelectron spectroscopy (XPS), as well as X-ray absorption spectroscopy (XAS) at atomic level. Experiments and theoretical calculations show that there are interfacial stresses, atomic defects and adjustable bond-length between MoS2/MXene nanosheets, which can significantly promote biomolecular adsorption and rapid electron transfer to achieve excellent electrochemical activity and reaction kinetics. The 1T-MoS2/Ti3C2TX modified electrode shows ultra high sensitivity of 1.198 μA/μM for dopamine detection with low limit of 0.05 μM. We anticipate that the interface electronic engineering investigation could provide a basic idea for guiding the exploration of advanced biosensors with high sensitivity and low detection limit.

Keywords: MXene, molybdenum sulfide, X-ray absorption spectroscopy, interface electronic effect, biomimetic sensor

References(67)

[1]

Herud-Sikimić, O.; Stiel, A. C.; Kolb. M.; Shanmugaratnam, S.; Berendzen, K. W.; Feldhaus, C.; Höcker, B.; Jürgens, G. A biosensor for the direct visualization of auxin. Nature 2021, 592, 768–772.

[2]

Inda, M. E.; Lu, T. K. Microbes as biosensors. Annu. Rev. Microbiol. 2020, 74, 337–359.

[3]

Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

[4]

Xiong, C.; Tian, L.; Xiao, C. C.; Xue, Z. G.; Zhou, F. Y.; Zhou, H.; Zhao, Y. F.; Chen, M.; Wang, Q. P.; Qu, Y. T. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

[5]

Wang, Q. P.; Chen, M.; Xiong, C.; Zhu, X. F.; Chen, C.; Zhou, F. Y.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y. M. et al. Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens. Bioelectron. 2022, 196, 113695.

[6]

Zhang, S. M.; Cicoira, F. Flexible self-powered biosensors. Nature 2018, 561, 466–467.

[7]

Condon, M. D.; Platt, N. J.; Zhang, Y. F.; Roberts, B. M.; Clements, M. A.; Vietti-Michelina, S.; Tseu, M. Y.; Brimblecombe, K. R.; Threlfell, S.; Mann, E. O. et al. Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter. Nat. Commun. 2019, 10, 4263.

[8]

Xiao, Y. S.; Wang, J. Dopamine: Opening the door of movement. Mov. Disord. 2018, 33, 1269.

[9]

Larsen, B.; Olafsson, V.; Calabro, F.; Laymon, C.; Tervo-Clemmens, B.; Campbell, E.; Minhas, D.; Montez, D.; Price, J.; Luna, B. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat. Commun. 2020, 11, 846.

[10]

Njagi, J.; Chernov, M. M.; Leiter, J. C.; Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 2010, 82, 989–996.

[11]

Zhang, J. L.; Wang, Y. H.; Huang, K.; Huang, K. J.; Jiang, H.; Wang, X. M. Enzyme-based biofuel cells for biosensors and in vivo power supply. Nano Energy 2021, 84, 105853.

[12]

Alagiri, M.; Rameshkumar, P.; Pandikumar, A. Gold nanorod-based electrochemical sensing of small biomolecules: A review. Microchim. Acta 2017, 184, 3069–3092.

[13]

He, W. Z.; Liu, R. T.; Zhou, P.; Liu, Q. Y.; Cui, T. H. Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens. Bioelectron. 2020, 167, 112473.

[14]

Ramachandran, R.; Leng, X. H.; Zhao, C. H.; Xu, Z. X.; Wang, F. 2D siloxene sheets: A novel electrochemical sensor for selective dopamine detection. Appl. Mater. Today 2020, 18, 100477.

[15]

Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. A.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, E.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

[16]

Ahmadi, N.; Bagherzadeh, M.; Nemati, A. Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite. Biosens. Bioelectron. 2020, 151, 111977.

[17]

Verma, S.; Arya, P.; Singh, A.; Kaswan, J.; Shukla, A.; Kushwaha, H. R.; Gupta, S.; Singh, S. P. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum. Biosens. Bioelectron. 2020, 165, 112347.

[18]

Liu, N.; Xiang, X. P.; Fu, L.; Cao, Q.; Huang, R.; Liu, H.; Han, G.; Wu, L. D. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens. Bioelectron. 2021, 188, 113340.

[19]

Sajid, M.; Baig, N.; Alhooshani, K. Chemically modified electrodes for electrochemical detection of dopamine: Challenges and opportunities. TrAC Trends Anal. Chem. 2019, 118, 368–385.

[20]

Gong, Q. J.; Han, H. X.; Wang, Y. D.; Yao, C. Z.; Yang, H. Y.; Qiao, J. L. An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode. New Carbon Mater. 2020, 35, 34–41.

[21]

Song, H. S.; Kwon, O. S.; Kim, J. H.; Conde, J.; Artzi, N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens. Bioelectron. 2017, 89, 187–200.

[22]

Tutar, R.; Motealleh, A.; Khademhosseini, A.; Kehr, N. S. Functional nanomaterials on 2D surfaces and in 3D nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater. 2019, 29, 1904344.

[23]

Li, B.; Gil, B.; Power, M.; Gao, A. Z.; Treratanakulchai, S.; Anastasova, S.; Yang, G. Z. Carbon-nanotube-coated 3D microspring force sensor for medical applications. ACS Appl. Mater. Interfaces 2019, 11, 35577–35586.

[24]

Lu, D. X.; Li, J. H.; Wu, Z.; Yuan, L.; Fang, W. H.; Zou, P.; Ma, L.; Wang, X. J. High-activity daisy-like zeolitic imidazolate framework-67/reduced grapheme oxide-based colorimetric biosensor for sensitive detection of hydrogen peroxide. J. Colloid Interface Sci. 2022, 608, 3069–3078.

[25]

Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

[26]

Kwon, K. C.; Baek, J. H.; Hong, K.; Kim, S. Y.; Jang, H. W. Correction to: Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 2022, 14, 71.

[27]

Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26–51.

[28]

Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol. 2016, 11, 465–471.

[29]

Wang, Y. C.; Ren, B. Y.; Ou, J. Z.; Xu, K.; Yang, C. H.; Li, Y. X.; Zhang, H. J. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis. Sci. Bull. 2021, 66, 1228–1252.

[30]

Vancsó, P.; Popov, Z. I.; Pető, J.; Ollár, T.; Dobrik, G.; Pap, J. S.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Transition metal chalcogenide single layers as an active platform for single-atom catalysis. ACS Energy Lett. 2019, 4, 1947–1953.

[31]

Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584–4587.

[32]

Lu, J. P.; Lu, J. H.; Liu, H. W.; Liu, B.; Gong, L. L.; Tok, E. S.; Loh, K. P.; Sow, C. H. Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 2015, 11, 1792–1800.

[33]

Karimipour, M.; Khazraei, S.; Kim, B. J.; Boschloo, G.; Johansson, E. M. J. Efficient and bending durable flexible perovskite solar cells via interface modification using a combination of thin MoS2 nanosheets and molecules binding to the perovskite. Nano Energy 2022, 95, 107044.

[34]

Mitterreiter, E.; Schuler, B.; Micevic, A.; Hernangómez-Pérez, D.; Barthelmi, K.; Cochrane, K. A.; Kiemle, J.; Sigger, F.; Klein, J.; Wong, E. et al. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 2021, 12, 3822.

[35]

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

[36]

Li, D. Y.; Zhao, L. L.; Xia, Q.; Wang, J.; Liu, X. M.; Xu, H. R.; Chou, S. L. Activating MoS2 Nanoflakes via Sulfur Defect Engineering Wrapped on CNTs for Stable and Efficient Li-O2 Batteries. Adv. Funct. Mater. 2022, 32, 2108153.

[37]
Yilmaz, G.; Yang, T.; Du, Y. H. Yu, X. J.; Feng, Y. P.; Shen, L.; Ho, G. W. Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Adv. Sci. 2019, 6, 1900140.
[38]

Zhu, H. Y.; Gan, X.; McCreary, A.; Lv, R. T.; Lin, Z.; Terrones, M. Heteroatom doping of two-dimensional materials: From graphene to chalcogenides. Nano Today 2020, 30, 100829.

[39]

Yang, W. W.; Zhang, S. Q.; Chen, Q.; Zhang, C.; Wei, Y.; Jiang, H. N.; Lin, Y. X.; Zhao, M. T.; He, Q. Q.; Wang, X. G. et al. Conversion of intercalated MoO3 to multi-heteroatoms-doped MoS2 with high hydrogen evolution activity. Adv. Mater. 2020, 32, 2001167.

[40]

Liu, F. R.; Wang, N.; Shi, C. S.; Sha, J. W.; Ma, L. Y.; Liu, E. Z.; Zhao, N. Q. Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133923.

[41]
Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.
[42]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[43]

Huang, Y. L.; Chen, W.; Wee, A. T. S. Two-dimensional magnetic transition metal chalcogenides. SmartMat 2021, 2, 139–153.

[44]

Jiang, K.; Luo, M.; Liu, Z. Z.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

[45]

Liu, D. B.; Xu, W. Y.; Liu, Q.; He, Q.; Haleem, Y. A.; Wang, C. D.; Xiang, T.; Zou, C. W.; Chu, W. S.; Zhong, J. et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res. 2016, 9, 2079–2087.

[46]

Feng, Y. Y.; Zhang, T.; Zhang, J. H.; Fan, H.; He, C.; Song, J. X. 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction. Small 2020, 16, 2002850.

[47]

Sun, X.; Deng, H. T.; Zhu, W. G.; Yu, Z.; Wu, C. Z.; Xie Y. Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for ullmann couplings. Angew. Chem., Int. Ed, 2016, 55, 1704–1709.

[48]

Lu, X. L.; Xu, K.; Tao, S.; Shao, Z. W.; Peng, X.; Bi, W. T.; Chen, P. Z.; Ding, H.; Chu, W. S.; Wu, C. Z. et al. Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity. Chem. Sci. 2016, 7, 1462–1467.

[49]

Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

[50]

Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Zhang, H.; Yu, J. G.; Zhai, T. Y. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

[51]

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon Fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

[52]

Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; Xie, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.

[53]

Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683–2690.

[54]

Zhu, J. T.; Wang, H.; Ma, L.; Zou, G. F. Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Res. 2021, 14, 3416–3422.

[55]

Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3-x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

[56]

Zhang, S. L.; Ying, H. J.; Huang, P. F.; Wang, J. L.; Zhang, Z.; Yang, T. T.; Han, W. Q. Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 2020, 14, 17665–17674.

[57]

Yuan, Z. Y.; Wang, L. L.; Li, D. D.; Cao, J. M.; Han, W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 2021, 15, 7439–7450.

[58]

Ma, K.; Dong, Y. R.; Jiang, H.; Hu, Y. J.; Saha, P.; Li, C. Z. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery. Chem. Eng. J. 2020, 413, 127479.

[59]

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

[60]

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

[61]

Deng, S. X.; Wang, B. Q.; Yuan, Y. F.; Li, X.; Sun, Q.; Doyle-Davis, K.; Banis, M. N.; Liang, J. N.; Zhao, Y.; Li, J. J. et al. Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes. Nano Energy 2019, 65, 103988–103997.

[62]

Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-Doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

[63]

Liu, Q.; Fang, Q.; Chu, W. S.; Wan, Y. Y.; Li, X. L.; Xu, W. Y.; Habib, M.; Tao, S.; Zhou, Y.; Liu, D. B. et al. Electron-Doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater. 2017, 29, 4738–4744.

[64]

Xu, H.; Yi, J. J.; She, X. J.; Liu, Q.; Song, L.; Chen, S. M.; Yang, Y. C.; Song, Y. H.; Vajtai, R.; Lou, J. et al. 2D heterostructure comprised of metallic 1T-MoS2 /Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Appl. Catal. B:Environ. 2018, 220, 379–385.

[65]

Ryaboshapka, D.; Piccolo, L.; Aouine, M.; Bargiela, P.; Briois, V.; Afanasiev, P. Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity. Appl. Catal. B:Environ. 2022, 302, 120831.

[66]

Li, Q.; Huo, C. R.; Yi, K.; Zhou, L. L.; Su, L.; Hou, X. M. Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors Actuat. B:Chem. 2018, 260, 346–356.

[67]

Xi, X.; Wu, D. Q.; Ji, W.; Zhang, S. N.; Tang, W.; Su, Y. Z.; Guo, X. J.; Liu, R. L. Manipulating the sensitivity and selectivity of OECT-based biosensors via the surface engineering of carbon cloth gate electrodes. Adv. Funct. Mater. 2020, 30, 1905361.

File
12274_2022_5038_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 May 2022
Revised: 08 September 2022
Accepted: 10 September 2022
Published: 24 October 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872011, 51902011, and 22005013]. The authors thank the BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL12B in the National Synchrotron Radiation Laboratory (NSRL) for help with characterizations.

Return