Journal Home > Volume 16 , Issue 2

Cost-effectively, eco-friendly rechargeable aqueous zinc-ion batteries (AZIBs) have reserved widespread concerns and become outstanding candidate in energy storage systems. However, the progress pace of AZIBs suffers from limitation of suitable and affordable cathode materials. Herein, a double-effect strategy is realized in a one-step hydrothermal treatment to prepare V2O5 nanoribbons with intercalation of Ce and introduction of abundant oxygen defects (Od-Ce@V2O5) to enhance electrochemical performance synergistically. Coupled with the theoretical calculation results, the introduction of Ce ions intercalation and oxygen vacancies in V2O5 structure enhances the electrical conductivity, reduces the adsorption energy of zinc ions, enlarges the interlayer distance, renders the structure more stable, and facilitates rapid diffusion kinetics. As expected, the desirable cathode delivers the reversible capacity of 444 mAh·g−1 at 0.5 A·g−1 and shows excellent Coulombic efficiency, as well as an extraordinary energy density of 304.9 Wh·kg−1. The strategy proposed here may aid in the further development of cathode materials with stable performance for AZIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Introducing Ce ions and oxygen defects into V2O5 nanoribbons for efficient aqueous zinc ion storage

Show Author's information Mingying Bao1Zhengchunyu Zhang1Xuguang An2Jie Liu3Jinkui Feng4Baojuan Xi1( )Shenglin Xiong1( )
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Key Laboratory of Mechanical Engineering of Education, School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
School of Materials Science and Engineering, Shandong University, Jinan 250061, China

Abstract

Cost-effectively, eco-friendly rechargeable aqueous zinc-ion batteries (AZIBs) have reserved widespread concerns and become outstanding candidate in energy storage systems. However, the progress pace of AZIBs suffers from limitation of suitable and affordable cathode materials. Herein, a double-effect strategy is realized in a one-step hydrothermal treatment to prepare V2O5 nanoribbons with intercalation of Ce and introduction of abundant oxygen defects (Od-Ce@V2O5) to enhance electrochemical performance synergistically. Coupled with the theoretical calculation results, the introduction of Ce ions intercalation and oxygen vacancies in V2O5 structure enhances the electrical conductivity, reduces the adsorption energy of zinc ions, enlarges the interlayer distance, renders the structure more stable, and facilitates rapid diffusion kinetics. As expected, the desirable cathode delivers the reversible capacity of 444 mAh·g−1 at 0.5 A·g−1 and shows excellent Coulombic efficiency, as well as an extraordinary energy density of 304.9 Wh·kg−1. The strategy proposed here may aid in the further development of cathode materials with stable performance for AZIBs.

Keywords: oxygen defects, aqueous zinc-ion batteries, double-effect, Ce element doping, Od-Ce@V2O5

References(54)

[1]

Tang, A. C.; Wan, C. B.; Meng, X. H.; Li, X. C.; Hu, X. Y.; Huang, M. F.; Ju, X. Oxygen vacancies confined in porous Co3V2O8 sheets for durable and high-energy aqueous sodium-ion capacitors. Nano Res. 2022, 15, 5123–5133.

[2]

Liu, H. Y.; Wang, J. G.; Hua, W.; You, Z. Y.; Hou, Z. D.; Yang, J. C.; Wei, C. G.; Kang, F. Y. Boosting zinc-ion intercalation in hydrated MoS2 nanosheets toward substantially improved performance. Energy Storage Mater. 2021, 35, 731–738.

[3]

Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res. 2022, 15, 4091–4099.

[4]

Niu, Y. J.; Yu, Z. Z.; Zhou, Y. J.; Tang, J. W.; Li, M. X.; Zhuang, Z. C.; Yang, Y.; Huang, X.; Tian, B. B. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy. Nano Res. 2022, 15, 7180–7189.

[5]

Chen, D.; Lu, M. J.; Cai, D.; Yang, H.; Han, W. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 712–726.

[6]

Wang, N.; Sun, C. L.; Liao, X. B.; Yuan, Y. F.; Cheng, H. W.; Sun, Q. C.; Wang, B. L.; Pan, X. L.; Zhao, K. N.; Xu, Q. et al. Reversible (De)intercalation of hydrated Zn2+ in Mg2+-stabilized V2O5 nanobelts with high areal capacity. Adv. Energy Mater. 2020, 10, 2002293.

[7]

Wang, X.; Zhang, Z. C. Y.; Xi, B. J.; Chen, W. H.; Jia, Y. X.; Feng, J. K.; Xiong, S. L. Advances and perspectives of cathode storage chemistry in aqueous zinc-ion batteries. ACS Nano 2021, 15, 9244–9272.

[8]

Chuai, M. Y.; Yang, J. L.; Wang, M. M.; Yuan, Y.; Liu, Z. C.; Xu, Y.; Yin, Y. C.; Sun, J. F.; Zheng, X. H.; Chen, N. et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 2021, 1, 178–185.

[9]

Wu, B. K.; Luo, W.; Li, M.; Zeng, L.; Mai, L. Q. Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Res. 2021, 14, 3174–3187.

[10]

Liao, M.; Wang, J. W.; Ye, L.; Sun, H.; Wen, Y. Z.; Wang, C.; Sun, X. M.; Wang, B. J.; Peng, H. S. A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode. Angew. Chem., Int. Ed. 2020, 59, 2273–2278.

[11]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[12]

Zhang, N.; Chen, X. Y.; Yu, M.; Niu, Z. Q.; Cheng, F. Y.; Chen, J. Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203–4219.

[13]

Liu, Y.; Wu, X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries. J. Energy Chem. 2021, 56, 223–237.

[14]

Wu, F. F.; Wang, Y. W.; Ruan, P. C.; Niu, X. X.; Zheng, D.; Xu, X. L.; Gao, X. B.; Cai, Y. H.; Liu, W. X.; Shi, W. H. et al. Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries. Mater. Today Energy 2021, 21, 100842.

[15]

Feng, Z. Y.; Zhang, Y. F.; Sun, J. J.; Liu, Y. Y.; Jiang, H. M.; Cui, M.; Hu, T.; Meng, C. G. Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chem. Eng. J. 2022, 433, 133795.

[16]

Wang, X.; Xi, B. J.; Ma, X. J.; Feng, Z. Y.; Jia, Y. X.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 2020, 20, 2899–2906.

[17]

Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224.

[18]

Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

[19]

Zhang, M. W.; Liang, R. L.; Or, T.; Deng, Y. P.; Yu, A. P.; Chen, Z. W. Recent progress on high-performance cathode materials for zinc-ion batteries. Small Struct. 2021, 2, 2000064.

[20]

He, P.; Zhang, G. B.; Liao, X. B.; Yan, M. Y.; Xu, X.; An, Q. Y.; Liu, J.; Mai, L. Q. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 2018, 8, 1702463.

[21]

Li, J. W.; McColl, K.; Lu, X. K.; Sathasivam, S.; Dong, H. B.; Kang, L. Q.; Li, Z. N.; Zhao, S. Y.; Kafizas, A. G.; Wang, R. et al. Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries. Adv. Energy Mater. 2020, 10, 2000058.

[22]

Cao, J.; Zhang, D. D.; Yue, Y. L.; Pakornchote, T.; Bovornratanaraks, T.; Sawangphruk, M.; Zhang, X. Y.; Qin, J. Q. Revealing the impacts of oxygen defects on Zn2+ storage performance in V2O5. Mater. Today Energy 2021, 21, 100824.

[23]

Zhang, D. D.; Cao, J.; Yue, Y. L.; Pakornchote, T.; Bovornratanaraks, T.; Han, J. T.; Zhang, X. Y.; Qin, J. Q.; Huang, Y. H. Two birds with one stone: Boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 38416–38424.

[24]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[25]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[26]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[27]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[28]

Yan, B.; Liao, L.; You, Y. M.; Xu, X. J.; Zheng, Z.; Shen, Z. X.; Ma, J.; Tong, L. M.; Yu, T. Single-crystalline V2O5 ultralong nanoribbon waveguides. Adv. Mater. 2009, 21, 2436–2440.

[29]

Cao, J.; Zhang, D. D.; Yue, Y. L.; Pakornchote, T.; Bovornratanaraks, T.; Zhang, X. Y.; Zeng, Z. Y.; Qin, J. Q.; Huang, Y. H. Boosting Zn2+ diffusion via tunnel-type hydrogen vanadium bronze for high-performance zinc ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 7909–7916.

[30]

He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. E.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

[31]

Luo, H.; Wang, B.; Wang, C. L.; Wu, F. D.; Jin, F.; Cong, B. W.; Ning, Y.; Zhou, Y.; Wang, D. L.; Liu, H. K. et al. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020, 33, 390–398.

[32]

Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

[33]

Wang, X.; Zhang, Z. C. Y.; Xiong, S. L.; Tian, F.; Feng, Z. Y.; Jia, Y. X.; Feng, J. K.; Xi, B. J. A high-rate and ultrastable aqueous zinc-ion battery with a novel MgV2O6·1.7H2O nanobelt cathode. Small 2021, 17, 2100318.

[34]

Yoo, G.; Koo, B. R.; An, G. H. Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process. Chem. Eng. J. 2022, 434, 134738.

[35]

Hyun, S.; Kaker, V.; Sivanantham, A.; Hong, J.; Shanmugam, S. The influence of porous Co/CeO1.88-nitrogen-doped carbon nanorods on the specific capacity of Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 17699–17706.

[36]

Fang, G. Z.; Zhu, C. Y.; Chen, M. H.; Zhou, J.; Tang, B. Y.; Cao, X. X.; Zheng, X. S.; Pan, A. Q.; Liang, S. Q. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 2019, 29, 1808375.

[37]

Zhao, D. Y.; Zhu, Q. C.; Li, X. H.; Dun, M. H.; Wang, Y.; Huang, X. T. Oxygen vacancies of commercial V2O5 induced by mechanical force to enhance the diffusion of zinc ions in aqueous zinc battery. Batteries Supercaps 2022, 5, e202100341.

[38]

Wang, Z. H.; Liang, P.; Zhang, R. G.; Liu, Z. M.; Li, W. Y.; Pan, Z. G.; Yang, H.; Shen, X. D.; Wang, J. Oxygen-defective V2O5 nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc-ion batteries. Appl. Surf. Sci. 2021, 562, 150196.

[39]

Zhang, N.; Jia, M.; Dong, Y.; Wang, Y. Y.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv. Funct. Mater. 2019, 29, 1807331.

[40]

He, P.; Yan, M. Y.; Zhang, G. B.; Sun, R. M.; Chen, L. N.; An, Q. Y.; Mai, L. Q. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 2017, 7, 1601920.

[41]

Hu, P.; Zhu, T.; Wang, X. P.; Wei, X. J.; Yan, M. Y.; Li, J. T.; Luo, W.; Yang, W.; Zhang, W. C.; Zhou, L. et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 2018, 18, 1758–1763.

[42]

Tang, B. Y.; Fang, G. Z.; Zhou, J.; Wang, L. B.; Lei, Y. P.; Wang, C.; Lin, T. Q.; Tang, Y.; Liang, S. Q. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 2018, 51, 579–587.

[43]

Xia, C.; Guo, J.; Lei, Y. J.; Liang, H. F.; Zhao, C.; Alshareef, H. N. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30, 1705580.

[44]

Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.

[45]

Zhang, N.; Cheng, F. Y.; Liu, Y. C.; Zhao, Q.; Lei, K. X.; Chen, C. C.; Liu, X. S.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901.

[46]

Wang, X.; Xi, B. J.; Feng, Z. Y.; Chen, W. H.; Li, H. B.; Jia, Y. X.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Layered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J. Mater. Chem. A 2019, 7, 19130–19139.

[47]

Cui, H. L.; Wang, T. R.; Huang, Z. D.; Liang, G. J.; Chen, Z.; Chen, A.; Wang, D. H.; Yang, Q.; Hong, H.; Fan, J. et al. High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation. Angew. Chem., Int. Ed. 2022, 61, e202203453.

[48]

Ding, Y. C.; Peng, Y. Q.; Chen, W. Y.; Niu, Y. J.; Wu, S. G.; Zhang, X. X.; Hu, L. H. V-MOF derived porous V2O5 nanoplates for high performance aqueous zinc ion battery. Appl. Surf. Sci. 2019, 493, 368–374.

[49]

Huang, S. M.; He, S. G.; Qin, H. Q.; Hou, X. H. Oxygen defect hydrated vanadium dioxide/graphene as a superior cathode for aqueous Zn batteries. ACS Appl. Mater. Interfaces 2021, 13, 44379–44388.

[50]

Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y. Y.; Qiu, M. D.; Xu, J. Z.; Liu, Y. C.; Jiao, L. F.; Cheng, F. Y. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3, 1366–1372.

[51]

Jiang, H. M.; Gong, W. B.; Zhang, Y. F.; Liu, X.; Waqar, M.; Sun, J. J.; Liu, Y. Y.; Dong, X. Y.; Meng, C. G.; Pan, Z. H. et al. Quench-tailored Al-doped V2O5 nanomaterials for efficient aqueous zinc-ion batteries. J. Energy Chem. 2022, 70, 52–58.

[52]

Ming, F. W.; Liang, H. F.; Lei, Y. J.; Kandambeth, S.; Eddaoudi, M.; Alshareef, H. N. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 2018, 3, 2602–2609.

[53]

Yang, W.; Dong, L. B.; Yang, W.; Xu, C. J.; Shao, G. J.; Wang, G. X. 3D oxygen-defective potassium vanadate/carbon nanoribbon networks as high-performance cathodes for aqueous zinc-ion batteries. Small Methods 2019, 4, 1900670.

[54]

Wang, Z. Q.; Zhou, M.; Qin, L. P.; Chen, M. H.; Chen, Z. X.; Guo, S.; Wang, L. B.; Fang, G. Z.; Liang, S. Q. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries. eScience 2022, 2, 209–218.

File
12274_2022_4990_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 July 2022
Revised: 13 August 2022
Accepted: 31 August 2022
Published: 27 October 2022
Issue date: February 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Nos. U21A2077, 21971145, and 21871164), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), the Natural Science Foundation of Shandong Province (Nos. ZR2021ZD05 and ZR2019MB024), and Young Scholars Program of Shandong University (No. 2017WLJH15).

Return