Journal Home > Volume 16 , Issue 2

Understanding how defect chemistry of oxide material influences the thermal stability of noble metal dopant ions plays an important role in designing high-performance heterogeneous catalytic systems. Here we use in-situ ambient-pressure X-ray photoemission spectroscopy (APXPS) to experimentally determine the role of grain boundary in the thermal stability of platinum doped cerium oxide (Pt/CeO2). The grain boundaries were introduced in Pt/CeO2 thin films by pulsed laser deposition without significantly change of the surface microstructure. The defect level was tuned by the strain field obtained using a highly/low mismatched substrate. The Pt/CeO2 thin film models having well defined crystallographic properties but different grain boundary structural defect levels provide an ideal platform for exploring the evolution of Pt–O–Ce bond with changing the temperature in reducing conditions. We have direct demonstration and explanation of the role of Ce3+ induced by grain boundaries in enhancing Pt2+ stability. We observe that the Pt2+–O–Ce3+ bond provides an ideal coordinated site for anchoring of Pt2+ ions and limits the further formation of oxygen vacancies during the reduction with H2. Our findings demonstrate the importance of grain boundary in the atomic-scale design of thermally stable catalytic active sites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Grain boundary boosting the thermal stability of Pt/CeO2 thin films

Show Author's information Luyao Wang1Xiaobao Li2Xiangchen Hu3Shuyue Chen3Zhehao Qiu3Yifan Wang1Hui Zhang2Yi Yu3Bo Yang3Yong Yang3Pasquale Orgiani4Carmela Aruta5( )Nan Yang1( )
Electrochemical thin film group, School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
School of physical science and technology, ShanghaiTech University, Shanghai 201210, China
CNR-IOM, TASC National Laboratory, I-34149 Trieste, Italy
CNR-SPIN, UOS Roma, Area della Ricerca di Tor Vergata, Rome I-00133, Italy

Abstract

Understanding how defect chemistry of oxide material influences the thermal stability of noble metal dopant ions plays an important role in designing high-performance heterogeneous catalytic systems. Here we use in-situ ambient-pressure X-ray photoemission spectroscopy (APXPS) to experimentally determine the role of grain boundary in the thermal stability of platinum doped cerium oxide (Pt/CeO2). The grain boundaries were introduced in Pt/CeO2 thin films by pulsed laser deposition without significantly change of the surface microstructure. The defect level was tuned by the strain field obtained using a highly/low mismatched substrate. The Pt/CeO2 thin film models having well defined crystallographic properties but different grain boundary structural defect levels provide an ideal platform for exploring the evolution of Pt–O–Ce bond with changing the temperature in reducing conditions. We have direct demonstration and explanation of the role of Ce3+ induced by grain boundaries in enhancing Pt2+ stability. We observe that the Pt2+–O–Ce3+ bond provides an ideal coordinated site for anchoring of Pt2+ ions and limits the further formation of oxygen vacancies during the reduction with H2. Our findings demonstrate the importance of grain boundary in the atomic-scale design of thermally stable catalytic active sites.

Keywords: grain boundaries, defect engineering, pulsed laser deposition, platinum doped cerium oxide (Pt/CeO2), epitaxial thin films, in-situ ambient-pressure X-ray photoemission spectroscopy

References(59)

[1]

Kašpar, J.; Fornasiero, P.; Hickey, N. Automotive catalytic converters: Current status and some perspectives. Catal. Today 2003, 77, 419–449.

[2]

Shelef, M.; McCabe, R. W. Twenty-five years after introduction of automotive catalysts: What next? Catal. Today 2000, 62, 35–50.

[3]

Steele, B. C. H. Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C. Solid State Ionics 2000, 129, 95–110.

[4]

Sun, C. W., Hui, R., Roller, J. Cathode materials for solid oxide fuel cells: A review. J. Solid State Electrochem. 2010, 14, 1125–1144.

[5]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[6]

Liu, S.; Tian, J.; Yin, K.; Li, Z.; Meng, X.; Zhu, M.; Seeram, R.; Sun, Y.; Dai, Y. Constructing fibril-in-tube structures in ultrathin CeO2-based nanofibers as the ideal support for stabilizing Pt nanoparticles. Mater. Today Chem. 2020, 17, 100333.

[7]

Lu, J. L. Atomic lego catalysts synthesized by atomic layer deposition. Acc. Mater. Res. 2022, 3, 358–368.

[8]

Derevyannikova, E. A.; Kardash, T. Y.; Stadnichenko, A. I.; Stonkus, O. A.; Slavinskaya, E. M.; Svetlichnyi, V. A.; Boronin, A. I. Structural insight into strong Pt–CeO2 interaction: From single Pt atoms to PtOx clusters. J. Phys. Chem. C 2019, 123, 1320–1334.

[9]

Pilger, F.; Testino, A.; Carino, A.; Proff, C.; Kambolis, A.; Cervellino, A.; Ludwig, C. Size control of Pt clusters on CeO2 nanoparticles via an incorporation–segregation mechanism and study of segregation kinetics. ACS Catal. 2016, 6, 3688–3699.

[10]

Nie, L.; Mei, D. C.; Xiong, H. F.; Peng, B.; Ren, Z. B.; Hernandez, X. I. P.; DeLaRiva, A.; Wang, M.; Engelhard, M. H.; Kovarik, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423.

[11]

Bruix, A.; Lykhach, Y.; Matolínová, I.; Neitzel, A.; Skála, T.; Tsud, N.; Vorokhta, M.; Stetsovych, V.; Ševčíková, K.; Mysliveček, J. et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem., Int. Ed. 2014, 53, 10525–10530.

[12]

Xin, Y.; Zhang, N. N.; Lv, Y. N.; Wang, J.; Li, Q.; Zhang, Z. L. From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. J. Rare Earths 2020, 38, 850–862.

[13]

Gatla, S.; Aubert, D.; Flaud, V.; Grosjean, R.; Lunkenbein, T.; Mathon, O.; Pascarelli, S.; Kaper, H. Facile synthesis of high-surface area platinum-doped ceria for low temperature CO oxidation. Catal. Today 2019, 333, 105–112.

[14]

Doherty, F.; Wang, H.; Yang, M.; Goldsmith, B. R. Nanocluster and single-atom catalysts for thermocatalytic conversion of CO and CO2. Catal. Sci. Technol. 2020, 10, 5772–5791.

[15]

Daelman, N.; Capdevila-Cortada, M.; López, N. Dynamic charge and oxidation state of Pt/CeO2 single-atom catalysts. Nat. Mater. 2019, 18, 1215–1221.

[16]

Campbell, C. T. The energetics of supported metal nanoparticles: Relationships to sintering rates and catalytic activity. Acc. Chem. Res. 2013, 46, 1712–1719.

[17]

Yang, C. M.; Lu, Y. X.; Zhang, L.; Kong, Z. J.; Yang, T. Y.; Tao, L.; Zou, Y. Q.; Wang, S. Y. Defect engineering on CeO2-based catalysts for heterogeneous catalytic applications. Small Struct. 2021, 2, 2100058.

[18]

Dvořák, F.; Farnesi Camellone, M.; Tovt, A.; Tran, N. D.; Negreiros, F. R.; Vorokhta, M.; Skála, T.; Matolínová, I.; Mysliveček, J.; Matolín, V. et al. Creating single-atom Pt-ceria catalysts by surface step decoration. Nat. Commun. 2016, 7, 10801.

[19]

Ye, X. X.; Wang, H. W.; Lin, Y.; Liu, X. Y.; Cao, L. N.; Gu, J.; Lu, J. L. Insight of the stability and activity of platinum single atoms on ceria. Nano Res. 2019, 12, 1401–1409.

[20]

Lee, J.; Ryou, Y.; Chan, X. J.; Kim, T. J.; Kim, D. H. How Pt interacts with CeO2 under the reducing and oxidizing environments at elevated temperature: The origin of improved thermal stability of Pt/CeO2 compared to CeO2. J. Phys. Chem. C 2016, 120, 25870–25879.

[21]

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 2003, 301, 935–938.

[22]

Lee, J.; Ryou, Y.; Kim, J.; Chan, X. J.; Kim, T. J.; Kim, D. H. Influence of the defect concentration of ceria on the Pt dispersion and the CO oxidation activity of Pt/CeO2. J. Phys. Chem. C 2018, 122, 4972–4983.

[23]

Wang, X.; van Bokhoven, J. A.; Palagin, D. Atomically dispersed platinum on low index and stepped ceria surfaces: Phase diagrams and stability analysis. Phys. Chem. Chem. Phys. 2020, 22, 28–38.

[24]

Arandiyan, H.; Mofarah, S. S.; Sorrell, C. C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H. Y.; Ni, B. J.; Rezaei, M. et al. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 2021, 50, 10116–10211.

[25]

Feng, B.; Sugiyama, I.; Hojo, H.; Ohta, H.; Shibata, N.; Ikuhara, Y. Atomic structures and oxygen dynamics of CeO2 grain boundaries. Sci. Rep. 2016, 6, 20288.

[26]

Hojo, H.; Mizoguchi, T.; Ohta, H.; Findlay, S. D.; Shibata, N.; Yamamoto, T.; Ikuhara, Y. Atomic structure of a CeO2 grain boundary: The role of oxygen vacancies. Nano Lett. 2010, 10, 4668–4672.

[27]

Sato, Y.; Buban, J. P.; Mizoguchi, T.; Shibata, N.; Yodogawa, M.; Yamamoto, T.; Ikuhara, Y. Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. Phys. Rev. Lett. 2006, 97, 106802.

[28]

Nie, J. F.; Zhu, Y. M.; Liu, J. Z.; Fang, X. Y. Periodic segregation of solute atoms in fully coherent twin boundaries. Science 2013, 340, 957–960.

[29]

Avila-Paredes, H. J; Choi, K.; Chen, C. T.; Kim, S. Dopant-concentration dependence of grain-boundary conductivity in ceria: A space-charge analysis. J. Mater. Chem. 2009, 19, 4837–4842.

[30]

Lin, Y.; Fang, S. M.; Su, D.; Brinkman, K. S.; Chen, F. L. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors. Nat. Commun. 2015, 6, 6824.

[31]

Bishara, H.; Lee, S.; Brink, T.; Ghidelli, M.; Dehm, G. Understanding grain boundary electrical resistivity in Cu: The effect of boundary structure. ACS Nano. 2021, 15, 16607–16615.

[32]

Liu, G. Y.; Tran-Phu, T.; Chen, H. J.; Tricoli, A. A review of metal- and metal-oxide-based heterogeneous catalysts for electroreduction of carbon dioxide. Adv. Sustain. Syst. 2018, 2, 1800028.

[33]

Kim, K. S.; Kim, W. J.; Lim, H. K.; Lee, E. K.; Kim, H. Tuned chemical bonding ability of au at grain boundaries for enhanced electrochemical CO2 reduction. ACS Catal. 2016, 6, 4443–4448.

[34]

Huang, X. B.; Zhao, G. X.; Wang, G.; Irvine, J. T. S. Synthesis and applications of nanoporous perovskite metal oxides. Chem. Sci. 2018, 9, 3623–3637.

[35]

He, J. F.; Wu, C. H.; Li, Y. M.; Li, C. L. Design of pre-catalysts for heterogeneous CO2 electrochemical reduction. J. Mater. Chem. A 2021, 9, 19508–19533.

[36]

Zhang, R. R.; Wang, L.; Ma, Y. H.; Pan, L.; Gao, R. J.; Li, K.; Zhang, X. W.; Zou, J. J. Grain boundaries modified uniformly-conjoint metal/oxides via binder strategy as efficient bifunctional electrocatalysts. J. Mater. Chem. A 2019, 7, 10010–10018.

[37]

Xie, R. J.; Hu, X. C.; Shi, Y. N.; Nie, Z. W.; Zhang, N.; Traversa, E.; Yu, Y.; Yang, N. Enhanced oxygen evolution activity of CoO-La0.7Sr0.3MnO3–δ heterostructured thin film. ACS Appl. Energy Mater. 2020, 3, 7988–7996.

[38]

Zhu, Z. X.; Shi, Y. N.; Aruta, C.; Yang, N. Improving electronic conductivity and oxygen reduction activity in Sr-doped lanthanum cobaltite thin films: Cobalt valence state and electronic band structure effects. ACS Appl. Energy Mater. 2018, 1, 5308–5317.

[39]

Ahn, J.; Choi, S.; Yoon, K. J.; Son, J. W.; Kim, B. K.; Lee, J. H.; Jang, H. W.; Kim, H. Strain-induced tailoring of oxygen-ion transport in highly doped CeO2 electrolyte: Effects of biaxial extrinsic and local lattice strain. ACS Appl. Mater. Interfaces 2017, 9, 42415–42419.

[40]

Ma, L. Y.; Doudin, N.; Surnev, S.; Barcaro, G.; Sementa, L.; Fortunelli, A.; Netzer, F. P. Lattice strain defects in a ceria nanolayer. J. Phys. Chem. Lett. 2016, 7, 1303–1309.

[41]

Pilger, F.; Testino, A.; Lucchini, M. A.; Kambolis, A.; Tarik, M.; El Kazzi, M.; Arroyo, Y.; Rossell, M. D.; Ludwig, C. One-pot polyol synthesis of Pt/CeO2 and Au/CeO2 nanopowders as catalysts for CO oxidation. J. Nanosci. Nanotechnol. 2015, 15, 3530–3539.

[42]

Cai, J.; Dong, Q.; Han, Y.; Mao, B. H.; Zhang, H.; Karlsson, P. G.; Åhlund, J.; Tai, R. Z.; Yu, Y.; Liu, Z. An APXPS endstation for gas–solid and liquid–solid interface studies at SSRF. Nucl. Sci. Tech. 2019, 30, 81.

[43]

Yang, N.; Knez, D.; Vinai, G.; Torelli, P.; Ciancio, R.; Orgiani, P.; Aruta, C. Improved structural properties in homogeneously doped Sm0.4Ce0.6O2−δ epitaxial thin films: High doping effect on the electronic bands. ACS Appl. Mater. Interfaces 2020, 12, 47556–47563.

[44]

Zhang, J. H.; Ke, C. M.; Wu, H. D.; Yu, J. S.; Wang, J. R.; Wang, Y. Solubility limits, crystal structure and lattice thermal expansion of Ln2O3 (Ln = Sm, Eu, Gd) doped CeO2. J. Alloys Compd. 2017, 718, 85–91.

[45]

Artini, C.; Pani, M.; Carnasciali, M. M.; Plaisier, J. R.; Costa, G. A. Lu-, Sm-, and Gd-doped ceria: A comparative approach to their structural properties. Inorg. Chem. 2016, 55, 10567–10579.

[46]
Han, Y.; Zhang, H.; Yu, Y.; Liu, Z. In situ characterization of catalysis and electrocatalysis using APXPS. ACS Catal. 2021, 11, 1464–1484.
[47]

Matolín, V.; Khalakhan, I.; Matolínová, I.; Václavů, M.; Veltruská, K.; Vorokhta, M. Pt2+, 4+ ions in CeO2 rf-sputtered thin films. Surf. Interface Anal. 2010, 42, 882–885.

[48]

Avakyan, L. A.; Kolpacheva, N. A.; Paramonova, E. V; Singh, J.; Hartfelder, U.; van Bokhoven, J. A.; Bugaev, L. A. Evolution of the atomic structure of ceria-supported platinum nanocatalysts: Formation of single layer platinum oxide and Pt–O–Ce and Pt–Ce linkages. J. Phys. Chem. C 2016, 120, 28057–28066.

[49]

Shin, J.; Lee, Y. J.; Jan, A.; Choi, S. M.; Park, M. Y.; Choi, S.; Hwang, J. Y.; Hong, S.; Park, S. G.; Chang, H. J. et al. Highly active and thermally stable single-atom catalysts for high-temperature electrochemical devices. Energy Environ. Sci. 2020, 13, 4903–4920.

[50]

Lykhach, Y.; Figueroba, A.; Camellone, M. F.; Neitzel, A.; Skála, T.; Negreiros, F. R.; Vorokhta, M.; Tsud, N.; Prince, K. C.; Fabris, S. et al. Reactivity of atomically dispersed Pt2+ species towards H2: Model Pt-CeO2 fuel cell catalyst. Phys. Chem. Chem. Phys. 2016, 18, 7672–7679.

[51]

Neitzel, A.; Johánek, V.; Lykhach, Y.; Skála, T.; Tsud, N.; Vorokhta, M.; Matolín, V.; Libuda, J. Reduction of Pt2+ species in model Pt-CeO2 fuel cell catalysts upon reaction with methanol. Appl. Surf. Sci. 2016, 387, 674–681.

[52]

Smirnov, M. Y.; Kalinkin, A. V; Vovk, E. I.; Bukhtiyarov, V. I. Size effect in the oxidation–reduction processes of platinum particles supported onto silicon dioxide. Kinet. Catal. 2015, 56, 801–809.

[53]

Yang, N.; Orgiani, P.; Di Bartolomeo, E.; Foglietti, V.; Torelli, P.; Ievlev, A. V; Rossi, G.; Licoccia, S.; Balestrino, G.; Kalinin, S. V. et al. Effects of dopant ionic radius on cerium reduction in epitaxial cerium oxide thin films. J. Phys. Chem. C 2017, 121, 8841–8849.

[54]

Shi, Y. N.; Wang, L. Y.; Wang, Z. Y.; Vinai, G.; Braglia, L.; Torelli, P.; Aruta, C.; Traversa, E.; Liu, W. M.; Yang, N. Defect engineering for tuning the photoresponse of ceria-based solid oxide photoelectrochemical cells. ACS Appl. Mater. Interfaces 2021, 13, 541–551.

[55]

Lykhach, Y.; Johánek, V.; Aleksandrov, H. A.; Kozlov, S. M.; Happel, M.; Skála, T.; St. Petkov, P; Tsud, N.; Vayssilov, G. N.; Prince, K. C. et al. Water chemistry on model ceria and Pt/ceria catalysts. J. Phys. Chem. C 2012, 116, 12103–12113.

[56]

Li, Z. R.; Werner, K.; Qian, K.; You, R.; Płucienik, A.; Jia, A. P.; Wu, L. H.; Zhang, L. Y.; Pan, H. B.; Kuhlenbeck, H. Oxidation of reduced ceria by incorporation of hydrogen. Angew. Chem. 2019, 58, 14686–14693.

[57]

Nenning, A.; Opitz, A. Low oxygen partial pressure increases grain boundary ion conductivity in Gd-doped ceria thin films. J. Phys. Energy 2020, 2, 014002.

[58]

Scanlon, D. O.; Morgan, B. J.; Watson, G. W. The origin of the enhanced oxygen storage capacity of Ce1−x(Pd/Pt)xO2. Phys. Chem. Chem. Phys. 2011, 13, 4279–4284.

[59]

Duchoň, T.; Hackl, J.; Mueller, D. N.; Kullgren, J.; Du, D.; Senanayake, S. D.; Mouls, C.; Gottlob, D. M.; Khan, M. I.; Cramm, S. et al. Establishing structure-sensitivity of ceria reducibility: Real-time observations of surface–hydrogen interactions. J. Mater. Chem. A 2020, 8, 5501–5507.

File
12274_2022_4899_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright

Publication history

Received: 05 June 2022
Revised: 24 July 2022
Accepted: 11 August 2022
Published: 14 September 2022
Issue date: February 2023

Copyright

© Tsinghua University Press, corrected publication 2022
Return