AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction

Siyuan Zhu1,2Liting Yang1,2Jingsen Bai1,2Yuyi Chu1,2Jie Liu1,2Zhao Jin1,2Changpeng Liu1,2Junjie Ge1,2,3( )Wei Xing1,2( )
State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, University of Science and Technology of China (USTC), Hefei 230026, China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
Show Author Information

Graphical Abstract

Pt-rare earth intermetallic alloys synthesized by a facile method towards for oxygen reduction reactions.

Abstract

Designing feasible electrocatalysts towards oxygen reduction reaction (ORR) requires advancement in both activity and stability, where attaining high stability is of extreme importance as the catalysts are expected to work efficiently under frequent start-up/shut down circumstances for at least several thousand hours. Alloying platinum with early transition metals (i.e., Pt–La alloy) is revealed as efficient catalysts construction strategy to potentially satisfy these demands. Here we report a Pt5La intermetallic compound synthesized by a novel and facile strategy. Due to the strong electronic interactions between Pt and La, the resultant Pt5La alloy catalyst exhibits enhanced activity with half wave of 0.92 V and mass activity of 0.49 A·mgPt−1, which strictly follows the 4e transfer pathway. More importantly, the catalyst performs superior stability during 30,000 cycles of accelerated stressed test (AST) with mass activity retention of 93.9%. This study provides new opportunities for future applications of Pt-rare earth metal alloy with excellent electrocatalytic properties.

Electronic Supplementary Material

Download File(s)
12274_2022_4868_MOESM1_ESM.pdf (1.2 MB)
12274_2022_4868_MOESM2_ESM.pdf (793.7 KB)

References

[1]

Zhang, J. W.; Yuan, Y. L.; Gao, L.; Zeng, G. M.; Li, M. F.; Huang, H. W. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: Fundamental understanding and design strategies. Adv. Mater. 2021, 33, 2006494.

[2]

Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 2021, 16, 140–147.

[3]

Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

[4]

Fang, D. H.; Wan, L.; Jiang, Q. K.; Zhang, H. J.; Tang, X. J.; Qin, X. P.; Shao, Z. G.; Wei, Z. D. Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Res. 2019, 12, 2766–2773.

[5]

Kim, C.; Dionigi, F.; Beermann, V.; Wang, X. L.; Möller, T.; Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, 1805617.

[6]

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

[7]

Beermann, V.; Holtz, M. E.; Padgett, E.; De Araujo, J. F.; Muller, D. A.; Strasser, P. Real-time imaging of activation and degradation of carbon supported octahedral Pt-Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 2019, 12, 2476–2485.

[8]

Ze, H.; Chen, X.; Wang, X. T.; Wang, Y. H.; Chen, Q. Q.; Lin, J. S.; Zhang, Y. J.; Zhang, X. G.; Tian, Z. Q.; Li, J. F. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 2021, 143, 1318–1322.

[9]

Wu, Z. P.; Caracciolo, D. T.; Maswadeh, Y.; Wen, J. G.; Kong, Z. J.; Shan, S. Y.; Vargas, J. A.; Yan, S.; Hopkins, E.; Park, K. et al. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat. Commun. 2021, 12, 859.

[10]

Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Atomically dispersed Fe-N-C decorated with Pt-alloy core−shell nanoparticles for improved activity and durability towards oxygen reduction. Energy Environ. Sci. 2020, 13, 3032–3040.

[11]

Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fang, W. S.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.

[12]

Luo, E. G.; Zhang, H.; Wang, X.; Gao, L. Q.; Gong, L. Y.; Zhao, T.; Jin, Z.; Ge, J. J.; Jiang, Z.; Liu, C. P. et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem., Int. Ed. 2019, 58, 12469–12475.

[13]

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

[14]

Ryoo, R.; Kim, J.; Jo, C.; Han, S. W.; Kim, J. C.; Park, H.; Han, J.; Shin, H. S.; Shin, J. W. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221–224.

[15]

Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

[16]

Xiang, S.; Wang, L.; Huang, C. C.; Fan, Y. J.; Tang, H. G.; Wei, L.; Sun, S. G. Concave cubic PtLa alloy nanocrystals with high-index facets: Controllable synthesis in deep eutectic solvents and their superior electrocatalytic properties for ethanol oxidation. J. Power Sources 2018, 399, 422–428.

[17]

Borchert, H.; Borchert, Y.; Kaichev, V. V.; Prosvirin, I. P.; Alikina, G. M.; Lukashevich, A. I.; Zaikovskii, V. I.; Moroz, E. M.; Paukshtis, E. A.; Bukhtiyarov, V. I. et al. Nanostructured, Gd-doped ceria promoted by Pt or Pd: Investigation of the electronic and surface structures and relations to chemical properties. J. Phys. Chem. B 2005, 109, 20077–20086.

[18]

Hu, Y.; Jensen, J. O.; Cleemann, L. N.; Brandes, B. A.; Li, Q. F. Synthesis of Pt-rare earth metal nanoalloys. J. Am. Chem. Soc. 2020, 142, 953–961.

[19]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[20]

Chen, H.; Wang, D. L.; Yu, Y. C.; Newton, K. A.; Muller, D. A.; Abruña, H.; Disalvo, F. J. A surfactant-free strategy for synthesizing and processing intermetallic platinum-based nanoparticle catalysts. J. Am. Chem. Soc. 2012, 134, 18453–18459.

[21]

Liang, J. S.; Zhao, Z. L.; Li, N.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Lu, G.; Wang, D. L.; Hwang, B. J. et al. Biaxial strains mediated oxygen reduction electrocatalysis on Fenton reaction resistant L10-PtZn fuel cell cathode. Adv. Energy Mater. 2020, 10, 2000179.

[22]

Hu, Y. Z.; Guo, X. Y.; Shen, T.; Zhu, Y.; Wang, D. L. Hollow porous carbon-confined atomically ordered PtCo3 intermetallics for an efficient oxygen reduction reaction. ACS Catal. 2022, 12, 5380–5387.

[23]

Zhu, S. Y.; Wang, X.; Luo, E. G.; Yang, L. T.; Chu, Y. Y.; Gao, L. Q.; Jin, Z.; Liu, C. P.; Ge, J. J.; Xing, W. Stabilized Pt cluster-based catalysts used as low-loading cathode in proton-exchange membrane fuel cells. ACS Energy Lett. 2020, 5, 3021–3028.

[24]

Rizo, R.; Fernández-Vidal, J.; Hardwick, L. J.; Attard, G. A.; Vidal-Iglesias, F. J.; Climent, V.; Herrero, E.; Feliu, J. M. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 2022, 13, 2550.

[25]

Dong, J. C.; Zhang, X. G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z. L.; Wu, D. Y.; Feliu, J. M.; Williams, C. T. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 2019, 4, 60–67.

Nano Research
Pages 2035-2040
Cite this article:
Zhu S, Yang L, Bai J, et al. Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction. Nano Research, 2023, 16(2): 2035-2040. https://doi.org/10.1007/s12274-022-4868-3
Topics:

1734

Views

21

Crossref

19

Web of Science

21

Scopus

1

CSCD

Altmetrics

Received: 10 June 2022
Revised: 26 July 2022
Accepted: 04 August 2022
Published: 22 September 2022
© Tsinghua University Press 2022
Return