Journal Home > Volume 16 , Issue 1

There are increasing concerns about the environmental impact of rising atmospheric carbon monoxide concentrations, thus it is necessary to develop new catalysts for efficient CO oxidation. Based on first-principles calculations, the potential of γ-graphyne (GY) as substrate for metals in the 4th and 5th periods under single-atom and dual-atoms concentration modes has been systematically investigated. It was found that single-atom Co, Ir, Rh, and Ru could effectively oxidate CO molecules, especially for single Rh. Furthermore, proper atoms concentration could boost the CO oxidation activity by supplying more reaction centers, such as Rh2/GY. It was determined that two Rh atoms in Rh2/GY act different roles in the catalytic reaction: one structural and another functional. Screening tests suggest that substituting the structural Rh atom in the center of acetylenic ring by Co or Cu atom is a possible way to maintain the reaction performance while reducing the noble metal cost. This systemic investigation will help in understanding the fundamental reaction mechanisms on GY-based substrates. We emphasize that properly exposed frontier orbital of functional metal atom is crucial in adsorption configuration as well as entire catalytic performance. This study constructs a workflow and provides valuable information for rational design of CO oxidation catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational design of graphyne-based dual-atom site catalysts for CO oxidation

Show Author's information Zhenwei Zhang1,2Liang Zhang3Xiaoyang Wang4Yuan Feng5Xiangwen Liu4( )Wenming Sun1( )
Department of Chemistry, Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
Linyi Vocational University of Science and Technology (Linyi Institute of Industrial Technology), Linyi 276000, China
Dassault Systemes (Shanghai) Information Technology Co., Ltd., Shanghai 200120, China
Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
TianHe Supercomputing Center of Huaihai, Linyi 276000, China

Abstract

There are increasing concerns about the environmental impact of rising atmospheric carbon monoxide concentrations, thus it is necessary to develop new catalysts for efficient CO oxidation. Based on first-principles calculations, the potential of γ-graphyne (GY) as substrate for metals in the 4th and 5th periods under single-atom and dual-atoms concentration modes has been systematically investigated. It was found that single-atom Co, Ir, Rh, and Ru could effectively oxidate CO molecules, especially for single Rh. Furthermore, proper atoms concentration could boost the CO oxidation activity by supplying more reaction centers, such as Rh2/GY. It was determined that two Rh atoms in Rh2/GY act different roles in the catalytic reaction: one structural and another functional. Screening tests suggest that substituting the structural Rh atom in the center of acetylenic ring by Co or Cu atom is a possible way to maintain the reaction performance while reducing the noble metal cost. This systemic investigation will help in understanding the fundamental reaction mechanisms on GY-based substrates. We emphasize that properly exposed frontier orbital of functional metal atom is crucial in adsorption configuration as well as entire catalytic performance. This study constructs a workflow and provides valuable information for rational design of CO oxidation catalysts.

Keywords: single-atom catalyst, density functional theory calculations, CO oxidation, graphyne, dual-atom site catalyst

References(66)

[1]

Liu, Z. P.; Hu, P. CO oxidation and NO reduction on metal surfaces: Density functional theory investigations. Top. Catal. 2004, 28, 71–78.

[2]

Molina, L. M.; Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 2003, 90, 206102.

[3]

Min, B. K.; Friend, C. M. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem. Rev. 2007, 107, 2709–2724.

[4]

van Spronsen, M. A.; Frenken, J. W. M.; Groot, I. M. N. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 2017, 46, 4347–4374.

[5]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[6]
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., in press, https://doi.org/10.1007/s12274-022-4429-9.
[7]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[8]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res., 2022, 15, 6888–6923.

[9]

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

[10]

Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

[11]

Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang, K. N.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev. 2018, 118, 6236–6296.

[12]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[13]

Gerber, I. C.; Serp, P. A theory/experience description of support effects in carbon-supported catalysts. Chem. Rev. 2020, 120, 1250–1349.

[14]

Yang, Y. L.; Xu, X. M. Mechanical properties of graphyne and its family-a molecular dynamics investigation. Comput. Mater. Sci. 2012, 61, 83–88.

[15]

Gu, Y. B.; Chen, X. L.; Cao, Y. Y.; Zhuang, G. L.; Zhong, X.; Wang, J. G. Atomically dispersed Pd catalysts in graphyne nanopore: Formation and reactivity. Nanotechnology 2017, 28, 295403.

[16]

Shi, H.; Xia, M.; Jia, L. T.; Hou, B.; Wang, Q.; Li, D. B. First principles study on the adsorption and diffusion properties of non-noble (Fe, Co, Ni and Cu) and noble (Ru, Rh, Pt and Pd) metal single atom on graphyne. Chem. Phys. 2020, 536, 110783.

[17]

He, C. Z.; Wang, R.; Xiang, D.; Li, X. Y.; Fu, L.; Jian, Z. Y.; Huo, J. R.; Li, S. Charge-regulated CO2 capture capacity of metal atom embedded graphyne: A first-principles study. Appl. Surf. Sci. 2020, 509, 145392.

[18]

Darvishnejad, M. H.; Reisi-Vanani, A. Synergetic effects of metals in graphyne 2D carbon structure for high promotion of CO2 capturing. Chem. Eng. J. 2021, 406, 126749.

[19]

Srinivasu, K.; Ghosh, S. K. Transition metal decorated graphyne: An efficient catalyst for oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 26021–26028.

[20]

Ni, Y. X.; Miao, L. C.; Wang, J. Q.; Liu, J. X.; Yuan, M. J.; Chen, J. Pore size effect of graphyne supports on CO2 electrocatalytic activity of Cu single atoms. Phys. Chem. Chem. Phys. 2020, 22, 1181–1186.

[21]

Wu, P.; Du, P.; Zhang, H.; Cai, C. X. Graphyne-supported single Fe atom catalysts for CO oxidation. Phys. Chem. Chem. Phys. 2015, 17, 1441–1449.

[22]

Ma, J. P.; Wu, S.; Yuan, Y.; Mao, H.; Lee, J. Y.; Kang, B. T. Graphyne-anchored single Fe atoms as efficient CO oxidation catalysts as predicted by DFT calculations. Phys. Chem. Chem. Phys. 2020, 22, 6004–6009.

[23]

Ma, D. W.; Li, T. X.; Wang, Q. G.; Yang, G.; He, C. Z.; Ma, B. Y.; Lu, Z. S. Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 2015, 95, 756–765.

[24]

Talib, S. H.; Hussain, S.; Baskaran, S.; Lu, Z. S.; Li, J. Chromium single-atom catalyst with graphyne support: A theoretical study of NO oxidation and reduction. ACS Catal. 2020, 10, 11951–11961.

[25]

He, J. J.; Ma, S. Y.; Zhou, P.; Zhang, C. X.; He, C. Y.; Sun, L. Z. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT plus U calculations. J. Phys. Chem. C 2012, 116, 26313–26321.

[26]

Kim, S.; Ruiz Puigdollers, A.; Gamallo, P.; Viñes, F.; Lee, J. Y. Functionalization of gamma-graphyne by transition metal adatoms. Carbon 2017, 120, 63–70.

[27]

Kim, S.; Gamallo, P.; Viñes, F.; Lee, J. Y. The nano gold rush: Graphynes as atomic sieves for coinage and Pt-group transition metals. Appl. Surf. Sci. 2020, 499, 143927.

[28]

Gao, X. P.; Mei, L.; Zhou, Y. N.; Shen, Z. M. Impact of electron transfer of atomic metals on adjacent graphyne layers on electrochemical water splitting. Nanoscale 2020, 12, 7814–7821.

[29]

Arachchige, L. J.; Xu, Y. J.; Dai, Z. X.; Zhang, X. L.; Wang, F.; Sun, C. H. Theoretical investigation of single and double transition metals anchored on graphyne monolayer for nitrogen reduction reaction. J. Phys. Chem. C 2020, 124, 15295–15301.

[30]

Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials. Adv. Theory Simul. 2018, 1, 1800018.

[31]

Gao, X. P.; Zhou, Y. N.; Tan, Y. J.; Liu, S. Q.; Cheng, Z. W.; Shen, Z. M. Strain effects on Co, N Co-decorated graphyne catalysts for overall water splitting electrocatalysis. Phys. Chem. Chem. Phys. 2020, 22, 2457–2465.

[32]

Gao, X. P.; Zhou, Y. N.; Liu, S. Q.; Cheng, Z. W.; Tan, Y. J.; Shen, Z. M. Single cobalt atom anchored on N-doped graphyne for boosting the overall water splitting. Appl. Surf. Sci. 2020, 502, 144155.

[33]

He, T. W.; Matta, S. K.; Du, A. J. Single tungsten atom supported on N-doped graphyne as a high-performance electrocatalyst for nitrogen fixation under ambient conditions. Phys. Chem. Chem. Phys. 2019, 21, 1546–1551.

[34]

Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

[35]

Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 66, 155125.

[36]

Kim, B. G.; Choi, H. J. Graphyne: Hexagonal network of carbon with versatile Dirac cones. Phys. Rev. B 2012, 86, 115435.

[37]

Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 2003, 28, 250–258.

[38]

Wang, X. Y.; Ye, J. M.; Zhang, L.; Bu, Y. X.; Sun, W. M. Strain engineering to tune the performance of CO oxidation on Cu2O(1 1 1) surface: A theoretical study. Appl. Surf. Sci. 2021, 540, 148331.

[39]

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

[40]

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

[41]

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

[42]

Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 2017, 29, 465901.

[43]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[44]

Garrity, K. F.; Bennett, J. W.; Rabe, K. M.; Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 2014, 81, 446–452.

[45]

Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.

[46]

Marzari, N.; Vanderbilt, D.; De Vita, A.; Payne, M. C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 1999, 82, 3296–3299.

[47]

Qiao, B. T.; Lin, J.; Wang, A. Q.; Chen, Y.; Zhang, T.; Liu, J. Y. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin. J. Catal. 2015, 36, 1505–1511.

[48]

Schilling, C.; Ziemba, M.; Hess, C.; Ganduglia-Pirovano, M. V. Identification of single-atom active sites in CO oxidation over oxide-supported Au catalysts. J. Catal. 2020, 383, 264–272.

[49]

Khan, A. A.; Ullah, R.; Esrafili, M. D.; Ahmad, R.; Ahmad, I. Co anchored B36 cluster as a novel single atom catalyst for removing toxic CO molecules: A mechanistic first-principles study. ChemistrySelect 2022, 7, e202103798.

[50]

Qin, L.; Cui, Y. Q.; Deng, T. L.; Wei, F. H.; Zhang, X. F. Highly stable and active Cu1/CeO2 single-atom catalyst for CO oxidation: A DFT study. ChemPhysChem 2018, 19, 3346–3349.

[51]

Lu, Y. B.; Wang, J. M.; Yu, L.; Kovarik, L.; Zhang, X. W.; Hoffman, A. S.; Gallo, A.; Bare, S. R.; Sokaras, D.; Kroll, T. et al. Identification of the active complex for CO oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat. Catal. 2019, 2, 149–156.

[52]

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

[53]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[54]

Kropp, T.; Lu, Z. L.; Li, Z.; Chin, Y. H. C.; Mavrikakis, M. Anionic single-atom catalysts for CO oxidation: Support-independent activity at low temperatures. ACS Catal. 2019, 9, 1595–1604.

[55]

DeRita, L.; Dai, S.; Lopez-Zepeda, K.; Pham, N.; Graham, G. W.; Pan, X. Q.; Christopher, P. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150–14165.

[56]

Han, B.; Li, T. B.; Zhang, J. Y.; Zeng, C. B.; Matsumoto, H.; Su, Y.; Qiao, B. T.; Zhang, T. A highly active Rh1/CeO2 single-atom catalyst for low-temperature CO Oxidation. Chem. Commun. 2020, 56, 4870–4873.

[57]

Mao, K. K.; Li, L.; Zhang, W. H.; Pei, Y.; Zeng, X. C.; Wu, X. J.; Yang, J. L. A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2D h-BN monolayer: A CO-promoted O2 activation. Sci. Rep. 2014, 4, 5441.

[58]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[59]

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

[60]

Zhu, X. R.; Yan, J. X.; Gu, M.; Liu, T. Y.; Dai, Y. F.; Gu, Y. H.; Li, Y. F. Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: A combined density functional theory and machine learning study. J. Phys. Chem. Lett. 2019, 10, 7760–7766.

[61]

Zang, W. J.; Kou, Z. K.; Pennycook, S. J.; Wang, J. Heterogeneous single atom electrocatalysis, where “Singles” are “Married”. Adv. Energy Mater. 2020, 10, 1903181.

[62]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[63]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[64]
Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru−Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., in press, https://doi.org/10.1002/ange.202205946.
[65]

Chatt, J.; Duncanson, L. A. 586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure:Attempted preparation of acetylene complexes. J. Chem. Soc. 1953, 2939–2947.

[66]

Chatt, J.; Duncanson, L. A.; Venanzi, L. M. Directing effects in inorganic substitution reactions. Part I. A hypothesis to explain the trans-effect. J. Chem. Soc. 1955, 4456–4460.

File
12274_2022_4823_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 June 2022
Revised: 21 July 2022
Accepted: 22 July 2022
Published: 10 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22101029 and 21703219), Beijing Municipal Natural Science Foundation (No. 2222006), Beijing Municipal Financial Project BJAST Scholar Programs B (No. BS202001), and Beijing Municipal Financial Project BJAST Young Scholar Programs B (No. YS202202). The authors acknowledge computational resources of TianHe-1A supercomputer at the National Supercomputing Center in Tianjin and technical support from Tianhe Supercomputing Center of Huaihai.

Return