Journal Home > Volume 16 , Issue 1

Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, challenges such as H2O- or SO2-induced poisoning to these catalysts still remain. Herein, we report an efficient strategy to prepare the dual single-atom Ce-Ti/MnO2 catalyst via ball-milling and calcination processes to address these issues. Ce-Ti/MnO2 showed better catalytic performance with a higher NO conversion and enhanced H2O- and SO2-resistance at a low-temperature window (100−150 °C) than the MnO2, single-atom Ce/MnO2, and Ti/MnO2 catalysts. The in situ infrared Fourier transform spectroscopy analysis confirmed there is no competitive adsorption between NOx and H2O over the Ce-Ti/MnO2 catalyst. The calculation results showed that the synergistic interaction of the neighboring Ce-Ti dual atoms as sacrificial sites weakens the ability of the active Mn sites for binding SO2 and H2O but enhances their binding to NH3. The insight obtained in this work deepens the understanding of catalysis for NH3-SCR. The synthesis strategy developed in this work is easily scaled up to commercialization and applicable to preparing other MnO2-based single-atom catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual single-atom Ce-Ti/MnO2 catalyst enhances low-temperature NH3-SCR performance with high H2O and SO2 resistance

Show Author's information Jingjing Song1,2,§Shaomian Liu2,§Yongjun Ji3( )Wenqing Xu2( )Jian Yu2Bing Liu4( )Wenxing Chen5( )Jianling Zhang2Lihua Jia1( )Tingyu Zhu2Ziyi Zhong6,7Guangwen Xu8Fabing Su2,8( )
College of Chemistry and Chemical Engineering, Qiqihaer University, Qiqihaer 161006, China
Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China
Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang 110142, China

§ Jingjing Song and Shaomian Liu contributed equally to this work.

Abstract

Mn-based catalysts have exhibited promising performance in low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, challenges such as H2O- or SO2-induced poisoning to these catalysts still remain. Herein, we report an efficient strategy to prepare the dual single-atom Ce-Ti/MnO2 catalyst via ball-milling and calcination processes to address these issues. Ce-Ti/MnO2 showed better catalytic performance with a higher NO conversion and enhanced H2O- and SO2-resistance at a low-temperature window (100−150 °C) than the MnO2, single-atom Ce/MnO2, and Ti/MnO2 catalysts. The in situ infrared Fourier transform spectroscopy analysis confirmed there is no competitive adsorption between NOx and H2O over the Ce-Ti/MnO2 catalyst. The calculation results showed that the synergistic interaction of the neighboring Ce-Ti dual atoms as sacrificial sites weakens the ability of the active Mn sites for binding SO2 and H2O but enhances their binding to NH3. The insight obtained in this work deepens the understanding of catalysis for NH3-SCR. The synthesis strategy developed in this work is easily scaled up to commercialization and applicable to preparing other MnO2-based single-atom catalysts.

Keywords: dual single atom catalyst, Ce-Ti/MnO2, low-temperature performance, selective catalytic reduction of NOx with NH3 (NH3-SCR), H2O- and SO2-resistance

References(68)

[1]

Guo, K.; Ji, J. W.; Song, W.; Sun, J. F.; Tang, C. J.; Dong, L. Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review. Appl. Catal. B Environ. 2021, 297, 120388.

[2]

Han, L. P.; Cai, S. X.; Gao, M.; Hasegawa, J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem Rev. 2019, 119, 10916–10976.

[3]

Lai, J. K.; Wachs, I. E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. ACS Catal. 2018, 8, 6537–6551.

[4]

Liu, Z.; Sun, G. X.; Chen, C.; Sun, K. A.; Zeng, L. Y.; Yang, L. Z.; Chen, Y. J.; Wang, W. H.; Liu, B.; Lu, Y. K. et al. Fe-doped Mn3O4 spinel nanoparticles with highly exposed Feoct-O-Mntet sites for efficient selective catalytic reduction (SCR) of NO with ammonia at low temperatures. ACS Catal. 2020, 10, 6803–6809.

[5]

Wang, X. M.; Li, X. Y.; Zhao, Q. D.; Sun, W. B.; Tade M.; Liu, S. M. Improved activity of W-modified MnOx-TiO2 catalysts for the selective catalytic reduction of NO with NH3. Chem. Eng. J. 2016, 288, 216–222.

[6]

Chen, L.; Yang, J.; Ren, S.; Chen, Z. C.; Zhou, Y. H.; Liu, W. Z. Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. J. Energy Inst. 2021, 98, 234–243.

[7]

Gao. G.; Shi, J. W.; Fan, Z. Y.; Gao, C.; Niu, C. M. MnM2O4 microspheres (M = Co, Cu, Ni) for selective catalytic reduction of NO with NH3: Comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy. Chem. Eng. J. 2017, 325, 91–100.

[8]

Wang, H. M.; Ning, P.; Zhang, Y. Q.; Ma, Y. P.; Wang, J. F.; Wang, L. Y.; Zhang, Q. L. Highly efficient WO3-FeOx catalysts synthesized using a novel solvent-free method for NH3-SCR. J. Hazard. Mater. 2020, 388, 121812.

[9]

Jiang, L. J.; Liang, Y.; Liu, W. Z.; Wu, H. L.; Aldahri, T.; Carrero, D. S.; Liu, Q. C. Synergistic effect and mechanism of FeOx and CeOx co-doping on the superior catalytic performance and SO2 tolerance of Mn-Fe-Ce/ACN catalyst in low-temperature NH3-SCR of NOx. J. Environ. Chem. Eng. 2021, 9, 106360.

[10]

Hao, Z. F.; Shen, Z. R.; Li, Y.; Wang, H. T.; Zheng, L. R.; Wang, R. H.; Liu, G. Q.; Zhan, S. H. The Role of alkali metal in α-MnO2 catalyzed ammonia-selective catalysis. Angew. Chem., Int. Ed. 2019, 58, 6351–6356.

[11]

Tarach, K. A.; Jabłońska, M.; Pyra, K.; Liebau, M.; Reiprich, B.; Gläser, R.; Góra-Marek, K. Effect of zeolite topology on NH3-SCR activity and stability of Cu-exchanged zeolites. Appl. Catal. B Environ. 2021, 284, 119752.

[12]

Chen, L.; Janssens, T. V. W.; Vennestrøm, P. N. R.; Jansson, J.; Skoglundh, M.; Grönbeck, H. A complete multisite reaction mechanism for low-temperature NH3-SCR over Cu-CHA. ACS Catal. 2020, 10, 5646–5656.

[13]

Sun, C. Z.; Liu, H.; Chen, W.; Chen, D. Z.; Yu, S. H.; Liu, A. N.; Dong, L.; Feng, S. Insights into the Sm/Zr co-doping effects on N2 selectivity and SO2 resistance of a MnOx-TiO2 catalyst for the NH3-SCR reaction. Chem. Eng. J. 2018, 347, 27–40.

[14]

Liu, H.; Sun, C. Z.; Fan, Z. X.; Jia, X. X.; Sun, J. F.; Gao, F.; Tang, C. J.; Dong, L. Doping effect of Sm on the TiO2/CeSmOx catalyst in the NH3-SCR reaction: Structure−activity relationship, reaction mechanism and SO2 tolerance. Catal. Sci. Technol. 2019, 9, 3554–3567.

[15]

Fang, X.; Liu, Y. J.; Cheng, Y.; Cen, W. L. Mechanism of Ce-modified birnessite-MnO2 in promoting SO2 poisoning resistance for low-temperature NH3-SCR. ACS Catal. 2021, 11, 4125–4135.

[16]

Fan, A. D.; Jing, Y.; Guo, J. X.; Shi, X. K.; Yuan, S. D.; Li, J. J. Investigation of Mn doped perovskite La-Mn oxides for NH3-SCR activity and SO2/H2O resistance. Fuel. 2022, 310, 122237.

[17]

Chen, L. Q.; Niu, X. Y.; Li, Z. B.; Dong, Y. L.; Zhang, Z. P.; Yuan, F. L.; Zhu, Y. J. Promoting catalytic performances of Ni-Mn spinel for NH3-SCR by treatment with SO2 and H2O. Catal Commun. 2016, 85, 48–51.

[18]

Pan, S. W.; Luo, H. C.; Li, L.; Wei, Z. L.; Huang, B. C. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3. J. Mol. Catal. A Chem. 2013, 377, 154–161.

[19]

Chang, H. Z.; Chen, X. Y.; Li, J. H.; Ma, L.; Wang, C. Z.; Liu, C. X.; Schwank, J. W.; Hao, J. M. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures. Environ. Sci. Technol. 2013, 47, 5294–5301.

[20]

Kijlstra, W. S.; Biervliet, B.; Poels, E. K.; Bliek, A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B Environ. 1998, 16, 327–337.

[21]

Chen, L. Q.; Li, R.; Li, Z. B.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Effect of Ni doping in NixMn1−xTi10 (x = 0.1−0.5) on activity and SO2 resistance for NH3-SCR of NO studied with in situ DRIFTS. Catal. Sci. Technol. 2017, 7, 3243–3257.

[22]

Wang, X. F.; Zhao, Z.; Xu, Y.; Li, Q. B. Promoting effect of Ti addition on three-dimensionally ordered macroporous Mn-Ce catalysts for NH3-SCR reaction: Enhanced N2 selectivity and remarkable water resistance. Appl. Surf. Sci. 2021, 569, 151047.

[23]

Jin, R. B.; Liu, Y.; Wang, Y.; Cen, W. L.; Wu, Z. B.; Wang, H. Q.; Weng, X. L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature. Appl. Catal. B Environ. 2014, 148, 582–588.

[24]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[25]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[26]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[27]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[28]

Fu, N. H.; Liang, X.; Li, Z.; Chen, W. X.; Wang, Y.; Zheng, L. R.; Zhang, Q. H.; Chen, C.; Wang, D. S.; Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

[29]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[30]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[31]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Technol. 2022, 1, 100013.

[32]

Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO catalyst. Angew. Chem., Int. Ed. 2022, 61, e202201655.

[33]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin n-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[34]

Zhang, N. Q.; Zhang, X. X.; Kang, Y. K.; Ye, C. L.; Jin, R.; Yan, H.; Lin, R.; Yang, J. R.; Xu, Q.; Wang, Y. et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13388–13393.

[35]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, e202205946.

[36]
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res., in press, https://doi.org/10.1007/s12274-022-4429-9.
[37]

Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Stor. Mater. 2022, 45, 805–813.

[38]

Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem., Int. Ed. 2022, 134, e202116170.

[39]

Chen, Z. Y.; Su, X. Z.; Ding, J.; Yang, N.; Zuo, W. B.; He, Q. Y.; Wei, Z. M.; Zhang, Q.; Huang, J.; Zhai, Y. M. Boosting oxygen reduction reaction with Fe and Se dual-atom sites supported by nitrogen-doped porous carbon. Appl. Catal. B Environ. 2022, 308, 121206.

[40]

Shi, Q.; Ji, Y. J.; Chen, W. X.; Zhu, Y. X.; Li, J.; Liu, H. Z.; Li, Z.; Tian, S. B.; Wang, L. G.; Zhong, Z. Y. et al. Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. Natl. Sci. Rev. 2020, 7, 600–608.

[41]

Wu, S. P.; Liu, H. M.; Huang, Z.; Xu, H. L.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B Environ. 2022, 312, 121387.

[42]

Huang, N.; Qu, Z. P.; Dong, C.; Qin, Y.; Duan, X. X. Superior performance of α@β-MnO2 for the toluene oxidation: Active interface and oxygen vacancy. Appl. Catal. A Gen. 2018, 560, 195–205.

[43]

Zhu, G. X.; Zhu, J. G.; Jiang, W. J.; Zhang, Z. J.; Wang, J.; Zhu, Y. F.; Zhang, Q. F. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Appl. Catal. B Environ. 2017, 209, 729–737.

[44]

Xie, Y. J.; Yu, Y. Y.; Gong, X. Q.; Guo, Y.; Guo, Y. L.; Wang, Y. Q.; Lu, G. Z. Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane. CrystEngComm. 2015, 17, 3005–3014.

[45]

He, X. H.; Deng, Y. C.; Zhang, Y.; He, Q.; Xiao, D. Q.; Peng, M.; Zhao, Y.; Zhang, H.; Luo, R. C.; Gan, T. et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell Rep. Phys. Sci. 2020, 1, 100004.

[46]

Thirupathi, B.; Smirniotis, P. G. Co-doping a metal (Cr, Fe, Co, Ni, Cu, Zn, Ce, and Zr) on Mn/TiO2 catalyst and its effect on the selective reduction of NO with NH3 at low-temperatures. Appl. Catal. B Environ. 2011, 110, 195–206.

[47]

Thirupathi, B.; Smirniotis, P. G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. J. Catal. 2012, 288, 74–83.

[48]

Boningari, T.; Pappas, D. K.; Ettireddy, P. R.; Kotrba, A.; Smirniotis, P. G. Influence of SiO2 on M/TiO2 (M = Cu, Mn, and Ce) formulations for low-temperature selective catalytic reduction of NOx with NH3: Surface properties and key components in relation to the activity of NOx reduction. Ind. Eng. Chem. Res. 2015, 54, 2261–2273.

[49]

Kwon, D. W.; Nam, K. B.; Hong. S. C. Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. A Gen. 2015, 497, 160–166.

[50]

Werfel, F.; Brümmer, O. Corundum structure oxides studied by XPS. Phys Scr. 1983, 28, 92–96.

[51]

Ingo, G. M.; Paparazzo, E.; Bagnarelli, O.; Zacchetti, N. XPS studies on cerium, zirconium and yttrium valence states in plasma-sprayed coatings. Surf Interface Anal. 1990, 16, 515–519.

[52]

Gao, F. Y.; Tang, X. L.; Yi, H. H.; Zhao, S. Z.; Wang, J. G.; Shi, Y. R.; Meng, X. M. Novel Co-or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature. Appl. Surf. Sci. 2018, 443, 103–113.

[53]

Zhao, B. H.; Ran, R.; Guo, X. G.; Cao, L.; Xu, T. F.; Chen, Z.; Wu, X. D.; Si, Z. C.; Weng, D. Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Appl. Catal. A Gen. 2017, 545, 64–71.

[54]

Gao, F. Y.; Tang, X. L.; Yi, H. H.; Li, J. Y.; Zhao, S. Z.; Wang, J. E.; Chu, C.; Li, C. L. Promotional mechanisms of activity and SO2 tolerance of Co-or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature. Chem. Eng. J. 2017, 317, 20–31.

[55]

Ma, S. B.; Zhao, X. Y.; Li, Y. S.; Zhang, T. R.; Yuan, F. L.; Niu, X. Y.; Zhu, Y. J. Effect of W on the acidity and redox performance of the Cu0.02Fe0.2WaTiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO. Appl. Catal. B Environ. 2019, 248, 226–238.

[56]

Ida, S.; Kim, N.; Ertekin, E.; Takenaka, S.; Ishihara, T. Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 2015, 137, 239–244.

[57]

Yang, S. J.; Wang, C. Z.; Li, J. H.; Yan, N. Q.; Ma, L.; Chang, H. Z. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study. Appl. Catal. B Environ. 2011, 110, 71–80.

[58]

Ding, S. P.; Liu, F. D.; Shi, X. Y.; Liu, K.; Lian, Z. H.; Xie, L. J.; Hong, H. Significant promotion effect of Mo additive on a novel Ce-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2015, 7, 9497–9506.

[59]

Meng, D. M.; Zhan, W. C.; Guo, Y.; Guo, G. L.; Wang, L.; Lu, G. Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature: Promotional role of Sm and its catalytic performance. ACS Catal. 2015, 5, 5973–5983.

[60]

Qi, G. S.; Yang, R. T. Characterization and FT-IR studies of MnOx-CeO2 catalyst for low-temperature SCR of NO with NH3. J. Phys. Chem. B. 2004, 108, 15738–15747.

[61]

Wang, B.; Wang, M. X.; Han, L. N.; Hou, Y. Q.; Bao, W. R.; Zhang, C. M.; Feng, G.; Chang, L. P.; Huang, Z. G.; Wang, J. C. Improved activity and SO2 resistance by Sm-modulated redox of MnCeSmTiOx mesoporous amorphous oxides for low-temperature NH3-SCR of NO. ACS Catal. 2020, 10, 9034–9045.

[62]

Peña, D. A.; Uphade, B. S.; Reddy, E. P.; Smirniotis, P. G. Identification of surface species on titania-supported manganese, chromium, and copper oxide low-temperature SCR catalysts. J. Phys. Chem. B 2004, 108, 9927–9936.

[63]

Gao, C.; Xiao, B.; Shi, J. W.; He, C.; Wang, B. R.; Ma, D. D.; Cheng, Y. H.; Niu, C. M. Comprehensive understanding the promoting effect of Dy-doping on MnFeOx nanowires for the low-temperature NH3-SCR of NOx: An experimental and theoretical study. J. Catal. 2019, 380, 55–67.

[64]

Fu, Z. H.; Zhang, G. D.; Han, W. L.; Tang, Z. C. The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating. Chem. Eng. J. 2021, 426, 131334.

[65]

Li, Y. L.; Han, X. J.; Hou, Y. Q.; Guo, Y. P.; Liu, Y. J.; Cui, Y.; Huang, Z. G. Role of CTAB in the improved H2O resistance for selective catalytic reduction of NO with NH3 over iron titanium catalyst. Chem. Eng. J. 2018, 347, 313–321.

[66]

Zhao, P. P.; Guo, M. Y.; Liu, Q. L.; Fan, L. J.; Han, J. F.; Liu, C. X.; Ji, N.; Song, C. F.; Ma, D. G.; Li, Z. G. Novel MnaZrbCrcOx catalysts for low temperature NH3-SCR derived from high H2O content flue gas via natural gas combustion. Chem. Eng. J. 2019, 378, 122100.

[67]

Xie, R. Y.; Ma, L.; Li, Z. H.; Qu, Z.; Yan, N. Q.; Li, J. H. Review of sulfur promotion effects on metal oxide catalysts for NOx emission control. ACS Catal. 2021, 11, 13119–13139.

[68]

Ma, L.; Seo, C. Y.; Nahata, M.; Chen, X. Y.; Li, J. H.; Schwank, J. W. Shape dependence and sulfate promotion of CeO2 for selective catalytic reduction of NOx with NH3. Appl. Catal. B Environ. 2018, 232, 246–259.

File
12274_2022_4790_MOESM1_ESM.pdf (1,001.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 June 2022
Revised: 17 July 2022
Accepted: 18 July 2022
Published: 11 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgment

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 52070180, 51938014, and 21802054), the Science Research Project of the Ministry of Education of the Heilongjiang Province of China (No. 145109102), and the Beijing Chenxi Environmental Engineering Co., Ltd. Z. Z. thanks the financial support of Guangdong Key discipline fund for this collaboration. Y. J. thanks the financial supports from the Outstanding Youth cultivation program of Beijing Technology and Business University (No. 19008021144) and Research Foundation for Advanced Talents of Beijing Technology and Business University (No. 19008020159).

Return