Journal Home > Volume 16 , Issue 1

Mott insulator material, as a kind of strongly correlated electronic system with the characteristic of a drastic change in electrical conductivity, shows excellent application prospects in neuromorphological calculations and has attracted significant attention in the scientific community. Especially, computing systems based on Mott insulators can overcome the bottleneck of separated data storage and calculation in traditional artificial intelligence systems based on the von Neumann architecture, with the potential to save energy, increase operation speed, improve integration, scalability, and three-dimensionally stacked, and more suitable to neuromorphic computing than a complementary metal-oxide-semiconductor. In this review, we have reviewed Mott insulator materials, methods for driving Mott insulator transformation (pressure-, voltage-, and temperature-driven approaches), and recent relevant applications in neuromorphic calculations. The results in this review provide a path for further study of the applications in neuromorphic calculations based on Mott insulator materials and the related devices.


menu
Abstract
Full text
Outline
About this article

A review of Mott insulator in memristors: The materials, characteristics, applications for future computing systems and neuromorphic computing

Show Author's information Yunfeng Ran1Yifei Pei1Zhenyu Zhou1Hong Wang1Yong Sun1Zhongrong Wang1Mengmeng Hao1Jianhui Zhao1( )Jingsheng Chen2( )Xiaobing Yan1( )
Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, College of Electronic and Information Engineering, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore

Abstract

Mott insulator material, as a kind of strongly correlated electronic system with the characteristic of a drastic change in electrical conductivity, shows excellent application prospects in neuromorphological calculations and has attracted significant attention in the scientific community. Especially, computing systems based on Mott insulators can overcome the bottleneck of separated data storage and calculation in traditional artificial intelligence systems based on the von Neumann architecture, with the potential to save energy, increase operation speed, improve integration, scalability, and three-dimensionally stacked, and more suitable to neuromorphic computing than a complementary metal-oxide-semiconductor. In this review, we have reviewed Mott insulator materials, methods for driving Mott insulator transformation (pressure-, voltage-, and temperature-driven approaches), and recent relevant applications in neuromorphic calculations. The results in this review provide a path for further study of the applications in neuromorphic calculations based on Mott insulator materials and the related devices.

Keywords: memristor, Mott insulator, the strongly correlated electronic system, neuromorphological calculations

References(199)

[1]

Wong, H. S. P.; Salahuddin, S. Memory leads the way to better computing. Nat. Nanotechnol. 2015, 10, 191–194.

[2]

Sugie, T.; Akamatsu, T.; Nishitsuji, T.; Hirayama, R.; Masuda, N.; Nakayama, H.; Ichihashi, Y.; Shiraki, A.; Oikawa, M.; Takada, N. et al. High-performance parallel computing for next-generation holographic imaging. Nat. Electron. 2018, 1, 254–259.

[3]

Zhang, X. J.; Huang, A. P.; Hu, Q.; Xiao, Z. S.; Chu, P. K. Neuromorphic computing with memristor crossbar. Phys. Status Solidi (A) 2018, 215, 1700875.

[4]

Yuan, L.; Liu, S. Z.; Chen, W. L.; Fan, F.; Liu, G. Organic memory and memristors: From mechanisms, materials to devices. Adv. Electron. Mater. 2021, 7, 2100432.

[5]

Wang, X. Y.; Zhou, P. F.; Eshraghian, J. K.; Lin, C. Y.; Iu, H. H. C.; Chang, T. C.; Kang, S. M. High-density memristor-CMOS ternary logic family. IEEE Trans. Circuits Syst. I:Regul. Pap. 2021, 68, 264–274.

[6]

Hou, P. F.; Wang, J. B.; Zhong, X. L.; Wu, Y. X. A ferroelectric memristor based on the migration of oxygen vacancies. RSC Adv. 2016, 6, 54113–54118.

[7]

Davies, M.; Srinivasa, N.; Lin, T. H.; Chinya, G.; Cao, Y. Q.; Choday, S. H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S. et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99.

[8]

Ham, S.; Choi, S.; Cho, H.; Na, S. I.; Wang, G. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity. Adv. Funct. Mater. 2019, 29, 1806646.

[9]

Yan, X. B.; Qin, C. Y.; Lu, C.; Zhao, J. H.; Zhao, R. J.; Ren, D. L.; Zhou, Z. Y.; Wang, H.; Wang, J. J.; Zhang, L. et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Appl. Mater. Interfaces 2019, 11, 48029–48038.

[10]

Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136.

[11]

Syu, Y. E.; Chang, T. C.; Lou, J. H.; Tsai, T. M.; Chang, K. C.; Tsai, M. J.; Wang, Y. L.; Liu, M.; Sze, S. M. Atomic-level quantized reaction of HfOx memristor. Appl. Phys. Lett. 2013, 102, 172903.

[12]

Ying, J. J.; Wang, G. Y.; Dong, Y. J.; Yu, S. M. Switching characteristics of a locally-active memristor with binary memories. Int. J. Bifurcation Chaos 2019, 29, 1930030.

[13]

Zhang, X. M.; Wang, W.; Liu, Q.; Zhao, X. L.; Wei, J. S.; Cao, R. R.; Yao, Z. H.; Zhu, X. L.; Zhang, F.; Lv, H. B. et al. An artificial neuron based on a threshold switching memristor. IEEE Electron Device Lett. 2018, 39, 308–311.

[14]

Yi, W.; Tsang, K. K.; Lam, S. K.; Bai, X. W.; Crowell, J. A.; Flores, E. A. Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun. 2018, 9, 4661.

[15]
Zhu, J. X.; Wu, Z. H.; Zhang, X. M.; Wang, Y. Z.; Lu, J.; Chen, P.; Cheng, L. L.; Shi, T.; Liu, Q. A flexible LIF neuron based on NbOx memristors for neural interface applications. In Proceedings of 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 2021, pp 1–3.
[16]

Yan, L.; Pei, Y. F.; Wang, J. J.; He, H.; Zhao, Y.; Li, X. Y.; Wei, Y. X.; Yan, X. B. High-speed Si films based threshold switching device and its artificial neuron application. Appl. Phys. Lett. 2021, 119, 153507.

[17]

Yan, X. B.; Zhou, Z. Y.; Zhao, J. H.; Liu, Q.; Wang, H.; Yuan, G. L.; Chen, J. S. Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Res. 2018, 11, 1183–1192.

[18]

Yan, X. B.; Pei, Y. F.; Chen, H. W.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Zhang, L.; Wang, J. J.; Li, X. Y.; Qin, C. Y. et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 2019, 31, 1805284.

[19]

Yu, T. Q.; He, F. C.; Zhao, J. H.; Zhou, Z. Y.; Chang, J. J.; Chen, J. S.; Yan, X. B. Hf0.5Zr0. 5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci. China Mater. 2021, 64, 727–738.

[20]

Zhao, H.; Liu, Z. W.; Tang, J. S.; Gao, B.; Zhang, Y. F.; Qian, H.; Wu, H. Q. Memristor-based signal processing for edge computing. Tsinghua Sci. Technol. 2022, 27, 455–471.

[21]

Zhang, Y. Z.; Huang, P.; Gao, B.; Kang, J. F.; Wu, H. Q. Oxide-based filamentary RRAM for deep learning. J. Phys. D:Appl. Phys. 2021, 54, 083002.

[22]

Yan, X. B.; He, H. D.; Liu, G. J.; Zhao, Z.; Pei, Y. F.; Liu, P.; Zhao, J. H.; Zhou, Z. Y.; Wang, K. Y.; Yan, H. W. A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3-CeO2 films on silicon. Adv. Mater. 2022, 34, 2110343.

[23]

Li, Y.; Zhang, C.; Shi, Z. M.; Ma, C. L.; Wang, J.; Zhang, Q. C. Recent advances on crystalline materials-based flexible memristors for data storage and neuromorphic applications. Sci. China Mater. 2022, 65, 2110–2127.

[24]

Li, Y.; Zhang, C.; Ling, S. T.; Ma, C. L.; Zhang, J. L.; Jiang, Y. C.; Zhao, R.; Li, H.; Lu, J. M.; Zhang, Q. C. Toward highly robust nonvolatile multilevel memory by fine tuning of the nanostructural crystalline solid-state order. Small 2021, 17, 2100102.

[25]

Zhang, C.; Li, Y.; Ma, C. L.; Zhang, Q. C. Recent progress of organic-inorganic hybrid perovskites in RRAM, artificial synapse, and logic operation. Small Sci. 2022, 2, 2100086.

[26]

Bethe, H. Theorie der beugung von elektronen an kristallen. Ann. Physik 1928, 392, 55–129.

[27]

Wilson, A. H. The theory of electronic semi-conductors. Proc. Roy. Soc. A:Math. Phys. Eng. Sci. 1997, 133, 458–491.

[28]

Sommerfeld, A. Zur elektronentheorie der metalle auf grund der fermischen statistik. Z. Physik 1928, 47, 43–60.

[29]

Barlow, H. M. LIII. A criticism of the electron theory of metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1929, 7, 459–470.

[30]

Mott, N. F. The basis of the electron theory of metals, with special reference to the transition metals. Proc. Phys. Soci. A 1949, 62, 416–422.

[31]

de Boer, J. H.; Verwey, E. J. W. Semi-conductors with partially and with completely filled 3d-lattice bands. Proc. Phys. Soc. 1937, 49, 59–71.

[32]

Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 1987, 235, 1196–1198.

[33]

Yamauchi, T.; Hirata, Y.; Ueda, Y.; Ohgushi, K. Pressure-induced Mott transition followed by a 24-K superconducting phase in BaFe2S3. Phys. Rev. Lett. 2015, 115, 246402.

[34]

Lee, H. S.; Choi, S. G.; Park, H. H.; Rozenberg, M. J. A new route to the Mott–Hubbard metal-insulator transition: Strong correlations effects in Pr0.7Ca0. 3MnO3. Sci. Rep. 2013, 3, 1704.

[35]

Zhang, K. H. L.; Du, Y.; Sushko, P. V.; Bowden, M. E.; Shutthanandan, V.; Sallis, S.; Piper, L. F. J.; Chambers, S. A. Hole-induced insulator-to-metal transition in La1−xSrxCrO3 epitaxial films. Phys. Rev. B 2015, 91, 155129.

[36]

Sohn, J. I.; Joo, H. J.; Ahn, D.; Lee, H. H.; Porter, A. E.; Kim, K.; Kang, D. J.; Welland, M. E. Surface-stress-induced Mott transition and nature of associated spatial phase transition in single crystalline VO2 nanowires. Nano Lett. 2009, 9, 3392–3397.

[37]

Shabalin, A. G.; del Valle, J.; Hua, N.; Cherukara, M. J.; Holt, M. V.; Schuller, I. K.; Shpyrko, O. G. Nanoscale imaging and control of volatile and non-volatile resistive switching in VO2. Small 2020, 16, 2005439.

[38]

Bombardi, A.; de Bergevin, F.; Di Matteo, S.; Paolasini, L.; Metcalf, P. A.; Honig, J. M. Precursor symmetry breaking in Cr doped V2O3. Phys. B:Condens. Matter 2004, 345, 40–44.

[39]

Metcalf, P. A.; Guha, S.; Gonzalez, L. P.; Barnes, J. O.; Slamovich, E. B.; Honig, J. M. Electrical, structural, and optical properties of Cr-doped and non-stoichiometric V2O3 thin films. Thin Solid Films 2007, 515, 3421–3425.

[40]

Kuwamoto, H.; Honig, J. M. Electrical properties and structure of Cr-doped nonstoichiometric V2O3. J. Solid State Chem. 1980, 32, 335–342.

[41]

Cha, E.; Park, J.; Woo, J.; Lee, D.; Prakash, A.; Hwang, H. Comprehensive scaling study of NbO2 insulator-metal-transition selector for cross point array application. Appl. Phys. Lett. 2016, 108, 153502.

[42]

Stoever, J.; Boschker, J. E.; Bin Anooz, S.; Schmidbauer, M.; Petrik, P.; Schwarzkopf, J.; Albrecht, M.; Irmscher, K. Approaching the high intrinsic electrical resistivity of NbO2 in epitaxially grown films. Appl. Phys. Lett. 2020, 116, 182103.

[43]

Saitoh, S.; Kinoshita, K. Oxide-based selector with trap-filling-controlled threshold switching. Appl. Phys. Lett. 2020, 116, 112101.

[44]

Abbas, H.; Ali, A.; Jung, J.; Hu, Q. L.; Park, M. R.; Lee, H. H.; Yoon, T. S.; Kang, C. J. Reversible transition of volatile to non-volatile resistive switching and compliance current-dependent multistate switching in IGZO/MnO RRAM devices. Appl. Phys. Lett. 2019, 114, 093503.

[45]
Kuan, M. C.; Yang, F. W.; Cheng, C. M.; Chen, K. H.; Lee, J. T. Bipolar switching properties of the manganese oxide thin film RRAM devices. Key Eng. Mater. 2014, 602–603, 1056–1059.
[46]

Wang, Y.; Lv, Z. Y.; Zhou, L.; Chen, X. L.; Chen, J. R.; Zhou, Y.; Roy, V. A. L.; Han, S. T. Emerging perovskite materials for high density data storage and artificial synapses. J. Mater. Chem. C 2018, 6, 1600–1617.

[47]

Oh, C.; Heo, S.; Jang, H. M.; Son, J. Correlated memory resistor in epitaxial NdNiO3 heterostructures with asymmetrical proton concentration. Appl. Phys. Lett. 2016, 108, 122106.

[48]

Medarde, M.; Fernández-Díaz, M. T.; Lacorre, P. Long-range charge order in the low-temperature insulating phase of PrNiO3. Phys. Rev. B 2008, 78, 212101.

[49]

Zhang, K.; Si, C.; Lian, C. S.; Zhou, J.; Sun, Z. M. Mottness collapse in monolayer 1T-TaSe2 with persisting charge density wave order. J. Mater. Chem. C 2020, 8, 9742–9747.

[50]

Chowdhury, S.; Jana, A.; Mandal, A. K.; Choudhary, R. J.; Phase, D. M. Electronic phase switching in the negative charge transfer energy SrCoOx thin films with the mottronic relevancies. ACS Appl. Electron. Mater. 2021, 3, 3060–3071.

[51]

Wu, J. C.; Guo, Y. Q.; Liu, H. F.; Zhao, J. Y.; Zhou, H. D.; Chu, W. S.; Wu, C. Z. Room-temperature ligancy engineering of perovskite electrocatalyst for enhanced electrochemical water oxidation. Nano Res. 2019, 12, 2296–2301.

[52]

Kuneš, J.; Anisimov, V. I. Various scenarios of metal-insulator transition in strongly correlated materials. Ann. Physik 2011, 523, 682–688.

[53]

Shao, Z. W.; Cao, X.; Luo, H. J.; Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 2018, 10, 581–605.

[54]

Wang, Y.; Kang, K. M.; Kim, M.; Lee, H. S.; Waser, R.; Wouters, D.; Dittmann, R.; Yang, J. J.; Park, H. H. Mott-transition-based RRAM. Mater. Today 2019, 28, 63–80.

[55]

Mita, Y.; Izaki, D.; Kobayashi, M.; Endo, S. Pressure-induced metallization of MnO. Phys. Rev. B 2005, 71, 100101.

[56]

Patterson, J. R.; Aracne, C. M.; Jackson, D. D.; Malba, V.; Weir, S. T.; Baker, P. A.; Vohra, Y. K. Pressure-induced metallization of the Mott insulator MnO. Phys. Rev. B 2004, 69, 220101.

[57]

Shorikov, A. O.; Pchelkina, Z. V.; Anisimov, V. I.; Skornyakov, S. L.; Korotin, M. A. Orbital-selective pressure-driven metal to insulator transition in FeO from dynamical mean-field theory. Phys. Rev. B 2010, 82, 195101.

[58]

Camjayi, A.; Acha, C.; Weht, R.; Rodríguez, M. G.; Corraze, B.; Janod, E.; Cario, L.; Rozenberg, M. J. First-order insulator-to-metal Mott transition in the paramagnetic 3D system GaTa4Se8. Phys. Rev. Lett. 2014, 113, 086404.

[59]

Frandsen, B. A.; Liu, L.; Cheung, S. C.; Guguchia, Z.; Khasanov, R.; Morenzoni, E.; Munsie, T. J. S.; Hallas, A. M.; Wilson, M. N.; Cai, Y. P. et al. Volume-wise destruction of the antiferromagnetic Mott insulating state through quantum tuning. Nat. Commun. 2016, 7, 12519.

[60]

Yoo, C. S.; Maddox, B.; Klepeis, J. H. P.; Iota, V.; Evans, W.; McMahan, A.; Hu, M. Y.; Chow, P.; Somayazulu, M.; Häusermann, D. et al. First-order isostructural Mott transition in highly compressed MnO. Phys. Rev. Lett. 2005, 94, 115502.

[61]

Rueff, J. P.; Mattila, A.; Badro, J.; Vankó, G.; Shukla, A. Electronic properties of transition-metal oxides under high pressure revealed by X-ray emission spectroscopy. J. Phys. :Condens. Matter 2005, 17, S717–S726.

[62]

Lee, S.; Bock, J. A.; Trolier-McKinstry, S.; Randall, C. A. Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity. J. Eur. Ceram. Soc. 2012, 32, 3971–3988.

[63]

Knittle, E.; Jeanloz, R.; Mitchell, A. C.; Nellis, W. J. Metallization of Fe0.94O at elevated pressures and temperatures observed by shock-wave electrical resistivity measurements. Solid State Commun., 1986, 59, 513–515.

[64]

Craco, L.; Leoni, S. Pressure-induced orbital-selective metal from the Mott insulator BaFe2Se3. Phys. Rev. B 2020, 101, 245113.

[65]

Ta Phuoc, V.; Vaju, C.; Corraze, B.; Sopracase, R.; Perucchi, A.; Marini, C.; Postorino, P.; Chligui, M.; Lupi, S.; Janod, E. et al. Optical conductivity measurements of GaTa4Se8 under high pressure: Evidence of a bandwidth-controlled insulator-to-metal Mott transition. Phys. Rev. Lett. 2013, 110, 037401.

[66]

Otsuka, A. M.; Silva, Jr. R. S.; dos Santos, C.; Ferreira, N. S.; dos S. Rezende, M. V. ; dos Santos, M. A. C. Effect of chemical and hydrostatic pressures on the structural and mechanical properties of orthorhombic rare-earth RNiO3. Comput. Mater. Sci. 2021, 197, 110691.

[67]

Torrance, J. B.; Lacorre, P.; Nazzal, A. I.; Ansaldo, E. J.; Niedermayer, C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge-transfer gap. Phys. Rev. B 1992, 45, 8209–8212.

[68]

Lupi, S.; Baldassarre, L.; Mansart, B.; Perucchi, A.; Barinov, A.; Dudin, P.; Papalazarou, E.; Rodolakis, F.; Rueff, J. P.; Itié, J. P. et al. A microscopic view on the Mott transition in chromium-doped V2O3. Nat. Commun. 2010, 1, 105.

[69]

Corraze, B.; Janod, E.; Cario, L.; Moreau, P.; Lajaunie, L.; Stoliar, P.; Guiot, V.; Dubost, V.; Tranchant, J.; Salmon, S. et al. Electric field induced avalanche breakdown and non-volatile resistive switching in the Mott insulators AM4Q8. Eur. Phys. J. Spec. Top. 2013, 222, 1046–1056.

[70]

Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J. M.; Kreisel, J. Rare-earth nickelates RNiO3: Thin films and heterostructures. Rep. Prog. Phys. 2018, 81, 046501.

[71]

Rao, C. N. R.; Ramdas, S.; Loehman, R. E.; Honig, J. M. Semiconductor-metal transition in Ti3O5. J. Solid State Chem. 1971, 3, 83–88.

[72]

Master, R.; Choudhary, R. J.; Phase, D. M. Effect of silver addition on structural, electrical and magnetic properties of Fe3O4 thin films prepared by pulsed laser deposition. J. Appl. Phys. 2012, 111, 073907.

[73]

Schwingenschlögl, U.; Eyert, V. The vanadium Magnéli phases VnO2n−1. Ann. Physik 2004, 516, 475–510.

[74]

Honig, J. M.; Wahnsiedler, W. E.; Banus, M. D.; Reed, T. B. Resistivity, magnetoresistance, and hall effect studies in VOx (0. 82 ≤ x ≤ 1. 0). J. Solid State Chem. 1970, 2, 74–77.

[75]

del Valle, J.; Kalcheim, Y.; Trastoy, J.; Charnukha, A.; Basov, D. N.; Schuller, I. K. Electrically induced multiple metal-insulator transitions in oxide nanodevices. Phys. Rev. Appl. 2017, 8, 054041.

[76]

Marezio, M.; McWhan, D. B.; Dernier, P. D.; Remeika, J. P. Structural aspects of the metal-insulator transition in V4O7. J. Solid State Chem. 1973, 6, 419–429.

[77]

Basu, R.; Sardar, M.; Dhara, S. Origin of phase transition in VO2. AIP Conf. Proc. 2018, 1942, 030003.

[78]

Tran, R.; Li, X. G.; Ong, S. P.; Kalcheim, Y.; Schuller, I. K. Metal-insulator transition in V2O3 with intrinsic defects. Phys. Rev. B 2021, 103, 075134.

[79]

Magnuson, M.; Butorin, S. M.; Såthe, C.; Nordgren, J.; Ravindran, P. Spin transition in LaCoO3 investigated by resonant soft X-ray emission spectroscopy. Europhys. Lett. 2004, 68, 289–295.

[80]

Music, D.; Krause, A. M.; Olsson, P. A. T. Theoretical and experimental aspects of current and future research on NbO2 thin film devices. Crystals 2021, 11, 217.

[81]

Scherwitzl, R.; Zubko, P.; Lezama, I. G.; Ono, S.; Morpurgo, A. F.; Catalan, G.; Triscone, J. M. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 2010, 22, 5517–5520.

[82]

Yamanaka, T.; Hattori, A. N.; Pamasi, L. N.; Takemoto, S.; Hattori, K.; Daimon, H.; Sato, K.; Tanaka, H. Effects of off-stoichiometry in the epitaxial NdNiO3 film on the suppression of its metal-insulator-transition properties. ACS Appl. Electron. Mater. 2019, 1, 2678–2683.

[83]

Wen, H. D.; Guo, L.; Barnes, E.; Lee, J. H.; Walko, D. A.; Schaller, R. D.; Moyer, J. A.; Misra, R.; Li, Y. L.; Dufresne, E. M. et al. Structural and electronic recovery pathways of a photoexcited ultrathin VO2 film. Phys. Rev. B 2013, 88, 165424.

[84]

Wu, J. M.; Liou, L. B. Room temperature photo-induced phase transitions of VO2 nanodevices. J. Mater. Chem. 2011, 21, 5499–5504.

[85]

Wei, J.; Wang, Z. H.; Chen, W.; Cobden, D. H. New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. Nat. Nanotechnol. 2009, 4, 420–424.

[86]

Budai, J. D.; Hong, J. W.; Manley, M. E.; Specht, E. D.; Li, C. W.; Tischler, J. Z.; Abernathy, D. L.; Said, A. H.; Leu, B. M.; Boatner, L. A. et al. Metallization of vanadium dioxide driven by large phonon entropy. Nature 2014, 515, 535–539.

[87]

Gorelov, E.; Karolak, M.; Wehling, T. O.; Lechermann, F.; Lichtenstein, A. I.; Pavarini, E. Nature of the Mott transition in Ca2RuO4. Phys. Rev. Lett. 2010, 104, 226401.

[88]

Moon, S. J.; Jin, H.; Choi, W. S.; Lee, J. S.; Seo, S. S. A.; Yu, J.; Cao, G.; Noh, T. W.; Lee, Y. S. Temperature dependence of the electronic structure of the Jeff = 12Mott insulator Sr2iRO4 studied by optical spectroscopy. Phys. Rev. B 2009, 80, 195110.

[89]

Perfetti, L.; Georges, A.; Florens, S.; Biermann, S.; Mitrovic, S.; Berger, H.; Tomm, Y.; Höchst, H.; Grioni, M. Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2. Phys. Rev. Lett. 2003, 90, 166401.

[90]

Chen, A.; Ma, G. K.; He, Y. L.; Chen, Q.; Liu, C. L.; Wang, H.; Chang, T. C. Research on temperature effect in insulator-metal transition selector based on NbOx thin films. IEEE Trans. Electron Devices 2018, 65, 5448–5452.

[91]

Mattoni, G.; Zubko, P.; Maccherozzi, F.; van der Torren, A. J. H.; Boltje, D. B.; Hadjimichael, M.; Manca, N.; Catalano, S.; Gibert, M.; Liu, Y. et al. Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates. Nat. Commun. 2016, 7, 13141.

[92]

Limelette, P.; Georges, A.; Jérome, D.; Wzietek, P.; Metcalf, P.; Honig, J. M. Universality and critical behavior at the Mott transition. Science 2003, 302, 89–92.

[93]

Meneghini, C.; Di Matteo, S.; Monesi, C.; Neisius, T.; Paolasini, L.; Mobilio, S.; Natoli, C. R.; Metcalf, P. A.; Honig, J. M. Antiferromagnetic-paramagnetic insulating transition in Cr-doped V2O3 investigated by EXAFS analysis. J. Phys. :Condens. Matter 2009, 21, 355401.

[94]

Janod, E.; Tranchant, J.; Corraze, B.; Querré, M.; Stoliar, P.; Rozenberg, M.; Cren, T.; Roditchev, D.; Phuoc, V. T.; Besland, M. P. et al. Resistive switching in Mott insulators and correlated systems. Adv. Funct. Mater. 2015, 25, 6287–6305.

[95]

Goodenough, J. B. The two components of the crystallographic transition in VO2. J. Solid State Chem. 1971, 3, 490–500.

[96]

Qazilbash, M. M.; Brehm, M.; Chae, B. G.; Ho, P. C.; Andreev, G. O.; Kim, B. J.; Yun, S. J.; Balatsky, A. V.; Maple, M. B.; Keilmann, F. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007, 318, 1750–1753.

[97]

Haverkort, M. W.; Hu, Z.; Tanaka, A.; Reichelt, W.; Streltsov, S. V.; Korotin, M. A.; Anisimov, V. I.; Hsieh, H. H.; Lin, H. J.; Chen, C. T. et al. Orbital-assisted metal-insulator transition in VO2. Phys. Rev. Lett. 2005, 95, 196404.

[98]

Kim, S.; Kim, K.; Kang, C. J.; Min, B. I. Correlation-assisted phonon softening and the orbital-selective peierls transition in VO2. Phys. Rev. B 2013, 87, 195106.

[99]

Yao, T.; Zhang, X. D.; Sun, Z. H.; Liu, S. J.; Huang, Y. Y.; Xie, Y.; Wu, C. Z.; Yuan, X.; Zhang, W. Q.; Wu, Z. Y. et al. Understanding the nature of the kinetic process in a VO2 metal-insulator transition. Phys. Rev. Lett. 2010, 105, 226405.

[100]

Xiao, H.; Li, Y.; Fang, B. Y.; Wang, X. H.; Liu, Z. M.; Zhang, J.; Li, Z. P.; Huang, Y. Q.; Pei, J. H. Voltage-induced switching dynamics based on an AZO/VO2/AZO sandwiched structure. Infrared Phys. Technol. 2017, 86, 212–217.

[101]

Yoon, J.; Kim, H.; Mun, B. S.; Park, C.; Ju, H. Investigation on onset voltage and conduction channel temperature in voltage-induced metal-insulator transition of vanadium dioxide. J. Appl. Phys. 2016, 119, 124503.

[102]

Mun, B. S.; Yoon, J.; Mo, S. K.; Chen, K.; Tamura, N.; Dejoie, C.; Kunz, M.; Liu, Z.; Park, C.; Moon, K. et al. Role of joule heating effect and bulk-surface phases in voltage-driven metal-insulator transition in VO2 crystal. Appl. Phys. Lett. 2013, 103, 061902.

[103]

Mun, B. S.; Chen, K.; Yoon, J.; Dejoie, C.; Tamura, N.; Kunz, M.; Liu, Z.; Grass, M. E.; Mo, S. K.; Park, C. et al. Nonpercolative metal-insulator transition in VO2 single crystals. Phys. Rev. B 2011, 84, 113109.

[104]

Del Valle, J.; Salev, P.; Tesler, F.; Vargas, N. M.; Kalcheim, Y.; Wang, P.; Trastoy, J.; Lee, M. H.; Kassabian, G.; Ramírez, J. G. et al. Subthreshold firing in Mott nanodevices. Nature 2019, 569, 388–392.

[105]

Ling, C.; Zhao, Z. J.; Hu, X. Y.; Li, J. B.; Zhao, X. S.; Wang, Z. G.; Zhao, Y. J.; Jin, H. B. W doping and voltage driven metal-insulator transition in VO2 nano-films for smart switching devices. ACS Appl. Nano Mater. 2019, 2, 6738–6746.

[106]

Ramadoss, K.; Zuo, F.; Sun, Y. F.; Zhang, Z.; Lin, J. Q.; Bhaskar, U.; Shin, S.; Alam, M. A.; Guha, S.; Weinstein, D. et al. Proton-doped strongly correlated perovskite nickelate memory devices. IEEE Electron Device Lett. 2018, 39, 1500–1503.

[107]

Okada, Y.; Arima, T.; Tokura, Y.; Murayama, C.; Môri, N. Doping- and pressure-induced change of electrical and magnetic properties in the Mott–Hubbard insulator LaTiO3. Phys. Rev. B 1993, 48, 9677–9683.

[108]

Katsufuji, T.; Taguchi, Y.; Tokura, Y. Transport and magnetic properties of a Mott–Hubbard system whose bandwidth and band filling are both controllable: R1−xCaxTiO3+y/2. Phys. Rev. B 1997, 56, 10145–10153.

[109]

Okimoto, Y.; Katsufuji, T.; Okada, Y.; Arima, T.; Tokura, Y. Optical spectra in (La, Y)TiO3: Variation of Mott–Hubbard gap features with change of electron correlation and band filling. Phys. Rev. B 1995, 51, 9581–9588.

[110]

Moetakef, P.; Cain, T. A. Metal-insulator transitions in epitaxial Gd1−xSrxTiO3 thin films grown using hybrid molecular beam epitaxy. Thin Solid Films 2015, 583, 129–134.

[111]

Sage, M. H.; Blake, G. R.; Palstra, T. T. M. Insulator-to-metal transition in (R, Ca)VO3. Phys. Rev. B 2008, 77, 155121.

[112]

Zhang, X.; Zhang, Y.; Wang, X. M.; An, X. X.; Chen, C. P.; Jing, X. P. Transport and magnetic properties in the Gd1−xCaxVO3 system. Jpn. J. Appl. Phys. 2011, 50, 101102.

[113]

Ju, H. L.; Sohn, H. C.; Krishnan, K. M. Evidence for O2p hole-driven conductivity in La1−xSrxMnO3(0 ≤ x ≤ 0. 7) and La0. 7Sr0. 3MnOz thin films. Phys. Rev. Lett. 1997, 79, 3230–3233.

[114]

Zhang, Z.; Schwanz, D.; Narayanan, B.; Kotiuga, M.; Dura, J. A.; Cherukara, M.; Zhou, H.; Freeland, J. W.; Li, J. R.; Sutarto, R. et al. Perovskite nickelates as electric-field sensors in salt water. Nature 2018, 553, 68–72.

[115]

Mineshige, A.; Kobune, M.; Fujii, S.; Ogumi, Z.; Inaba, M.; Yao, T.; Kikuchi, K. Metal-insulator transition and crystal structure of La1−xSrxCoO3 as functions of Sr-content, temperature, and oxygen partial pressure. J. Solid State Chem. 1999, 142, 374–381.

[116]

Bringley, J. F.; Scott, B. A.; La Placa, S. J.; McGuire, T. R.; Mehran, F.; McElfresh, M. W.; Cox, D. E. Structure and properties of the LaCuO3−σ perovskites. Phys. Rev. B 1993, 47, 15269–15275.

[117]

Xu, H. C.; Zhang, Y.; Xu, M.; Peng, R.; Shen, X. P.; Strocov, V. N.; Shi, M.; Kobayashi, M.; Schmitt, T.; Xie, B. P. et al. Direct observation of the bandwidth control Mott transition in the NiS2−xSex multiband system. Phys. Rev. Lett. 2014, 112, 087603.

[118]

Shi, J.; Zhou, Y.; Ramanathan, S. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nat. Commun. 2014, 5, 4860.

[119]

Eyert, V. The metal-insulator transitions of VO2: A band theoretical approach. Ann. Physik 2002, 514, 650–704.

[120]

Cheng, S. B.; Lee, M. H.; Li, X.; Fratino, L.; Tesler, F.; Han, M. G.; del Valle, J.; Dynes, R. C.; Rozenberg, M. J.; Schuller, I. K. et al. Operando characterization of conductive filaments during resistive switching in Mott VO2. Proc. Natl. Acad. Sci. USA 2021, 118, e2013676118.

[121]

Kalcheim, Y.; Camjayi, A.; del Valle, J.; Salev, P.; Rozenberg, M.; Schuller, I. K. Non-thermal resistive switching in Mott insulator nanowires. Nat. Commun. 2020, 11, 2985.

[122]

Mou, X.; Tang, J. S.; Lyu, Y. J.; Zhang, Q. T.; Yang, S. Y.; Xu, F.; Liu, W.; Xu, M. H.; Zhou, Y.; Sun, W. et al. Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv. 2021, 7, eabh0648.

[123]

Yan, X. B.; Zhang, L.; Chen, H. W.; Li, X. Y.; Wang, J. J.; Liu, Q.; Lu, C.; Chen, J. S.; Wu, H. Q.; Zhou, P. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Adv. Funct. Mater. 2018, 28, 1803728.

[124]

Yan, X. B.; Zhao, J. H.; Liu, S.; Zhou, Z. Y.; Liu, Q.; Chen, J. S.; Liu, X. Y. Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 2018, 28, 1705320.

[125]

Wang, K. Y.; Li, L. T.; Zhao, R. J.; Zhao, J. H.; Zhou, Z. Y.; Wang, J. J.; Wang, H.; Tang, B. K.; Lu, C.; Lou, J. Z. et al. A pure 2H-MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator. Adv. Electron. Mater. 2020, 6, 1901342.

[126]

Wang, H.; Yu, T. Q.; Zhao, J. H.; Wang, S. F.; Yan, X. B. Low-power memristors based on layered 2D SnSe/graphene materials. Sci. China Mater. 2021, 64, 1989–1996.

[127]

Yan, X. B.; Cao, G.; Wang, J. J.; Man, M. H.; Zhao, J. H.; Zhou, Z. Y.; Wang, H.; Pei, Y. F.; Wang, K. Y.; Gao, C. et al. Memristors based on multilayer graphene electrodes for implementing a low-power neuromorphic electronic synapse. J. Mater. Chem. C 2020, 8, 4926–4933.

[128]

Liu, L. A.; Zhao, J. H.; Cao, G.; Zheng, S. K.; Yan, X. B. A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing. Adv. Mater. Technol. 2021, 6, 2100373.

[129]

Zhao, J. H.; Sun, Y.; Lu, W. H.; Pei, Y. F.; Zhou, Z. Y.; Guo, R.; Zeng, K. Y.; Liu, B. T.; Peng, Q. M.; Chen, J. S. et al. Realization of long retention properties of quantum conductance through confining the oxygen vacancy diffusion. Appl. Phys. Rev. 2022, 9, 021419.

[130]

Park, J. W.; Park, J. W.; Yang, M. K.; Jung, K.; Kim, D. Y.; Lee, J. K. Low-voltage resistive switching of polycrystalline SrZrO3: Cr thin films grown on Si substrates by off-axis rf sputtering. J. Vac. Sci. Technol. A 2006, 24, 970–973.

[131]

Tranchant, J.; Janod, E.; Cario, L.; Corraze, B.; Souchier, E.; Leclercq, J. L.; Cremillieu, P.; Moreau, P.; Besland, M. P. Electrical characterizations of resistive random access memory devices based on GaV4S8 thin layers. Thin Solid Films 2013, 533, 61–65.

[132]

Lee, T. J.; Kim, S. K.; Seong, T. Y. Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Sci. Rep. 2020, 10, 5761.

[133]

Lim, H.; Cho, H.; Kim, H.; Lee, N.; Shin, S.; Jung, C.; Kim, H.; Lim, K.; Jeon, H. Postdeposition annealing on VO2 films for resistive random-access memory selection devices. J. Vac. Sci. Technol. A 2018, 36, 051501.

[134]
Seong, D. J; Park, J; Lee, N; Hasan, M; Jung, S; Choi, H; Lee, J; Jo, M; Lee, W; Park, S. et al. Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications. In Proceedings of 2009 IEEE International Electron Devices Meeting, Baltimore, USA, 2009, pp 1–4.
[135]

Lee, H. S.; Park, C. S.; Park, H. H. Effect of La3+ substitution with Gd3+ on the resistive switching properties of La0.7Sr0. 3MnO3 thin films. Appl. Phys. Lett. 2014, 104, 191604.

[136]

Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M. P.; Janod, E.; Cario, L. Non-volatile resistive switching in the Mott insulator (V1−xCrx)2O3. Phys. B:Condens. Matter 2018, 536, 327–330.

[137]

Zhao, L.; Hong, Q. H.; Wang, X. P. Novel designs of spiking neuron circuit and STDP learning circuit based on memristor. Neurocomputing 2018, 314, 207–214.

[138]

Williamson, A.; Schumann, L.; Hiller, L.; Klefenz, F.; Hoerselmann, I.; Husar, P.; Schober, A. Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems. Nanoscale 2013, 5, 7297–7303.

[139]

Serrano-Gotarredona, T.; Masquelier, T.; Prodromakis, T.; Indiveri, G.; Linares-Barranco, B. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 2013, 7, 2.

[140]

Pan, Y.; Wan, T.; Du, H. W.; Qu, B.; Wang, D. Y.; Ha, T. J.; Chu, D. W. Mimicking synaptic plasticity and learning behaviours in solution processed SnO2 memristor. J. Alloys Compd. 2018, 757, 496–503.

[141]

Zhang, X. M.; Liu, S.; Zhao, X. L.; Wu, F. C.; Wu, Q. T.; Wang, W.; Cao, R. R.; Fang, Y. L.; Lv, H. B.; Long, S. B. et al. Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor. IEEE Electron Device Lett. 2017, 38, 1208–1211.

[142]

Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765.

[143]

Hu, S. G.; Liu, Y.; Liu, Z.; Chen, T. P.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, S. Synaptic long-term potentiation realized in Pavlov’s dog model based on a NiOx-based memristor. J. Appl. Phys. 2014, 116, 214502.

[144]

Gong, Y.; Wang, Y.; Li, R. H.; Yang, J. Q.; Lv, Z. Y.; Xing, X. C.; Liao, Q. F.; Wang, J. J.; Chen, J. R.; Zhou, Y. et al. Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor. J. Mater. Chem. C 2020, 8, 2985–2992.

[145]

Kim, D. S.; Kim, Y. H.; Lee, C. E.; Kim, Y. T. Colossal electroresistance mechanism in a Au/Pr0.7Ca0. 3MnO3/Pt sandwich structure:Evidence for a Mott transition. Phys. Rev. B 2006, 74, 174430.

[146]
Park, S.; Kim, H.; Choo, M.; Noh, J.; Sheri, A.; Jung, S.; Seo, K.; Park, J.; Kim, S.; Lee, W. et al. RRAM-based synapse for neuromorphic system with pattern recognition function. In Proceedings of 2012 International Electron Devices Meeting, San Francisco, USA, 2012, pp 10.2. 1–10.2. 4.
[147]

Shi, J.; Ha, S. D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. A correlated nickelate synaptic transistor. Nat. Commun. 2013, 4, 2676.

[148]

Deng, X.; Wang, S. Q.; Liu, Y. X.; Zhong, N.; He, Y. H.; Peng, H.; Xiang, P. H.; Duan, C. G. A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2101099.

[149]

Liu, X. J.; Sadaf, S. M.; Park, S.; Kim, S.; Cha, E.; Lee, D.; Jung, G. Y.; Hwang, H. Complementary resistive switching in niobium oxide-based resistive memory devices. IEEE Electron Device Lett. 2013, 34, 235–237.

[150]

Shin, S. H.; Halpern, T.; Raccah, P. M. High-speed high-current field switching of NbO2. J. Appl. Phys. 1977, 48, 3150–3153.

[151]
Luo, Q; Xu, X. X; Lv, H. B; Gong, T. C; Long, S. B; Liu, Q; Sun, H. T; Li, L; Lu, N. D; Liu, M. Fully BEOL compatible TaOx-based selector with high uniformity and robust performance. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2016, pp 11.7. 1–11.7. 4
[152]

Gao, L. G.; Chen, P. Y.; Yu, S. M. NbOx based oscillation neuron for neuromorphic computing. Appl. Phys. Lett. 2017, 111, 103503.

[153]

Zhao, X. H.; Chen, A.; Ji, J.; Wu, D. J.; Gan, Y.; Wang, C.; Ma, G. K.; Lin, C. Y.; Lin, C. C.; Liu, N. F. et al. Ultrahigh uniformity and stability in NbOx-based selector for 3D memory by using Ru electrode. IEEE Trans. Electron Devices 2021, 68, 2255–2259.

[154]

Lee, D.; Kwak, M.; Moon, K.; Choi, W.; Park, J.; Yoo, J.; Song, J.; Lim, S.; Sung, C.; Banerjee, W. et al. Various threshold switching devices for integrate and fire neuron applications. Adv. Electron. Mater. 2019, 5, 1800866.

[155]

Zhang, Z. Q.; Chen, A.; Ma, G. K.; He, Y. L.; Lin, C. Y.; Lin, C. C.; Wang, H.; Chang, T. C. Controllable functional layer and temperature-dependent characteristic in niobium oxide insulator-metal transition selector. IEEE Trans. Electron Devices 2020, 67, 2771–2777.

[156]

Jeon, D. S.; Dongale, T. D.; Kim, T. G. Low power Ti-doped NbO2-based selector device with high selectivity and low OFF current. J. Alloys Compd. 2021, 884, 161041.

[157]

Chen, A.; He, Y. L.; Ma, G. K.; Zhang, Z. Q.; Ji, J.; Wan, J. S.; Zhang, J. Q.; Wan, H. Z.; Tao, L.; Rao, Y. H. et al. Improved uniformity and threshold voltage in NbOx-ZrO2 selectors. Appl. Phys. Lett. 2021, 119, 073503.

[158]

Son, M.; Lee, J.; Park, J.; Shin, J.; Choi, G.; Jung, S.; Lee, W.; Kim, S.; Park, S.; Hwang, H. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 2011, 32, 1579–1581.

[159]
Zhang, K. L.; Wang, B. L.; Wang, F.; Han, Y. M.; Jian, X. C.; Zhang, H. Z.; Wong, H. S. P. VO2-based selection device for passive resistive random access memory application. IEEE Electron Device Lett. 2016, 37, 978–981.
[160]

Zhou, X.; Gu, D. E.; Li, Y. T.; Qin, H. X.; Jiang, Y. D.; Xu, J. A high performance electroformed single-crystallite VO2 threshold switch. Nanoscale 2019, 11, 22070–22078.

[161]

Xue, W. H.; Liu, G.; Zhong, Z. C.; Dai, Y. H.; Shang, J.; Liu, Y. W.; Yang, H. L.; Yi, X. H.; Tan, H. W.; Pan, L. et al. A 1D vanadium dioxide nanochannel constructed via electric-field-induced ion transport and its superior metal-insulator transition. Adv. Mater. 2017, 29, 1702162.

[162]

Hua, Q. L.; Wu, H. Q.; Gao, B.; Zhao, M. R.; Li, Y. J.; Li, X. Y.; Hou, X.; Chang, M. F.; Zhou, P.; Qian, H. A threshold switching selector based on highly ordered ag nanodots for X-point memory applications. Adv. Sci. 2019, 6, 1900024.

[163]
Kim, S.; Liu, X. J.; Park, J.; Jung, S.; Lee, W.; Woo, J.; Shin, J.; Choi, G.; Cho, C.; Park, S. et al. Ultrathin (< 10 nm) Nb2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. In Proceedings of 2012 Symposium on VLSI Technology, Honolulu, USA, 2012, pp 155–156.
[164]

Pickett, M. D.; Medeiros-Ribeiro, G.; Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 2013, 12, 114–117.

[165]

Stoliar, P.; Tranchant, J.; Corraze, B.; Janod, E.; Besland, M. P.; Tesler, F.; Rozenberg, M.; Cario, L. A leaky-integrate-and-fire neuron analog realized with a Mott insulator. Adv. Funct. Mater. 2017, 27, 1604740.

[166]

Zhang, X. M.; Zhuo, Y.; Luo, Q.; Wu, Z. H.; Midya, R.; Wang, Z. R.; Song, W. H.; Wang, R.; Upadhyay, N. K.; Fang, Y. L. et al. An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun. 2020, 11, 51.

[167]

Duan, Q. X.; Jing, Z. K.; Zou, X. L.; Wang, Y. H.; Yang, K.; Zhang, T.; Wu, S.; Huang, R.; Yang, Y. C. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. Nat. Commun. 2020, 11, 3399.

[168]

Kumar, S.; Strachan, J. P.; Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 2017, 548, 318–321.

[169]

Kumar, S.; Williams, R. S.; Wang, Z. W. Third-order nanocircuit elements for neuromorphic engineering. Nature 2020, 585, 518–523.

[170]

Xu, Z.; Bernussi, A. A.; Fan, Z. Y. Voltage pulse driven VO2 volatile resistive transition devices as leaky integrate-and-fire artificial neurons. Electronics 2022, 11, 516.

[171]

del Valle, J.; Salev, P.; Kalcheim, Y.; Schuller, I. K. A caloritronics-based Mott neuristor. Sci. Rep. 2020, 10, 4292.

[172]

Xia, Q.; Qin, Y. X.; Qiu, P. L.; Zheng, A. B.; Zhang, X. S. A bio-inspired tactile nociceptor constructed by integrating wearable sensing paper and a VO2 threshold switching memristor. J. Mater. Chem. B 2022, 10, 1991–2000.

[173]

Wang, Y. L.; Li, M. C.; Zhao, L. C. The effects of vacuum annealing on the structure of VO2 thin films. Surf. Coat. Technol. 2007, 201, 6772–6776.

[174]

Zou, J.; Chen, X. Y.; Xiao, L. Phase transition performance recovery of W-doped VO2 by annealing treatment. Mater. Res. Express 2018, 5, 065055.

[175]

Ogugua, S. N.; Ntwaeaborwa, O. M.; Swart, H. C. Latest development on pulsed laser deposited thin films for advanced luminescence applications. Coatings 2020, 10, 1078.

[176]

Zhao, Y. F.; Chen, C. Z.; Wang, D. G. The application of pulsed laser deposition in producing bioactive ceramic films. Surf. Rev. Lett. 2005, 12, 401–408.

[177]

Bao, Q. H.; Chen, C. Z.; Wang, D. G.; Ji, Q. M.; Lei, T. Q. Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl. Surf. Sci. 2005, 252, 1538–1544.

[178]

Oskirko, V. O.; Zakharov, A. N.; Pavlov, A. P.; Solovyev, А. А.; Semenov, V. A.; Rabotkin, S. V. Hybrid HIPIMS + MFMS power supply for dual magnetron sputtering systems. Vacuum 2020, 181, 109670.

[179]

Depla, D. Sputter deposition with powder targets: An overview. Vacuum 2021, 184, 109892.

[180]

Yang, Z.; Hart, S.; Ko, C.; Yacoby, A.; Ramanathan, S. Studies on electric triggering of the metal-insulator transition in VO2 thin films between 77 K and 300 K. J. Appl. Phys. 2011, 110, 033725.

[181]

Driscoll, T.; Quinn, J.; Di Ventra, M.; Basov, D. N.; Seo, G.; Lee, Y. W.; Kim, H. T.; Smith, D. R. Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches. Phys. Rev. B 2012, 86, 094203.

[182]

Kumar, S.; Esfandyarpour, R.; Davis, R.; Nishi, Y. Surface charge sensing by altering the phase transition in VO2. J. Appl. Phys. 2014, 116, 074511.

[183]

Okuyama, D.; Shibuya, K.; Kumai, R.; Suzuki, T.; Yamasaki, Y.; Nakao, H.; Murakami, Y.; Kawasaki, M.; Taguchi, Y.; Tokura, Y. et al. X-ray study of metal-insulator transitions induced by w doping and photoirradiation in VO2 films. Phys. Rev. B 2015, 91, 064101.

[184]

Rodolakis, F.; Hansmann, P.; Rueff, J. P.; Toschi, A.; Haverkort, M. W.; Sangiovanni, G.; Tanaka, A.; Saha-Dasgupta, T.; Andersen, O. K.; Held, K. et al. Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption. Phys. Rev. Lett. 2010, 104, 047401.

[185]

Singh, V. R.; Jovic, V.; Valmianski, I.; Ramirez, J. G.; Lamoureux, B.; Schuller, I. K.; Smith, K. E. Irreversible metal-insulator transition in thin film VO2 induced by soft X-ray irradiation. Appl. Phys. Lett. 2017, 111, 241605.

[186]

Hwang, I. H.; Jin, Z. L.; Park, C. I.; Sun, C. J.; Brewe, D. L.; Han, S. W. Electrical and structural properties of VO2 in an electric field. Curr. Appl. Phys. 2021, 30, 77–84.

[187]

Zhao, Z. J.; Li, J. B.; Ling, C.; Zhao, X. S.; Zhao, Y. J.; Jin, H. B. Electric field driven abnormal increase in conductivity of tungsten-doped VO2 nanofilms. Thin Solid Films 2021, 725, 138643.

[188]

Yang, S.; Vaseem, M.; Shamim, A. Fully inkjet-printed VO2-based radio-frequency switches for flexible reconfigurable components. Adv. Mater. Technol. 2019, 4, 1800276.

[189]

Zou, Z. R.; Zhang, Z. H.; Xu, J.; Yu, Z. Y.; Cheng, M.; Xiong, R.; Lu, Z. H.; Liu, Y.; Shi, J. Thermochromic, threshold switching, and optical properties of Cr-doped VO2 thin films. J. Alloys Compd. 2019, 806, 310–315.

[190]

Rini, M.; Tobey, R.; Dean, N.; Itatani, J.; Tomioka, Y.; Tokura, Y.; Schoenlein, R. W.; Cavalleri, A. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 2007, 449, 72–74.

[191]

Pickett, M. D.; Williams, R. S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 2012, 23, 215202.

[192]

Mo, S. K.; Kim, H. D.; Denlinger, J. D.; Allen, J. W.; Park, J. H.; Sekiyama, A.; Yamasaki, A.; Suga, S.; Saitoh, Y.; Muro, T. et al. Photoemission study of (V1−xMx)2O3(M = Cr, Ti). Phys. Rev. B 2006, 74, 165101.

[193]

Wang, Z. W.; Kang, J.; Bai, G. D.; Zhong, G. F.; Wang, B. W.; Ling, Y. T.; Chen, Q. Y.; Bao, L.; Wu, L. D.; Cai, Y. M. et al. Self-selective resistive device with hybrid switching mode for passive crossbar memory application. IEEE Electron Device Lett. 2020, 41, 1009–1012.

[194]

You, Z.; Ramanathan, S. Mott memory and neuromorphic devices. Proc. IEEE 2015, 103, 1289–1310.

[195]

Shamsi, J.; Avedillo, M. J.; Linares-Barranco, B.; Serrano-Gotarredona, T. Hardware implementation of differential oscillatory neural networks using VO2-based oscillators and memristor-bridge circuits. Front. Neurosci. 2021, 15, 674567.

[196]

Li, G.; Xie, D. G.; Zhong, H.; Zhang, Z. Y.; Fu, X. K.; Zhou, Q. L.; Li, Q.; Ni, H.; Wang, J. O.; Guo, E. J. et al. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 2022, 13, 1729.

[197]

Kang, K. M.; Kim, D. J.; Kim, S. H.; Moon, W. M. Doppler velocity characteristics during tropical cyclones observed using ScanSAR raw data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2343–2355.

[198]

Velichko, A. A method for evaluating chimeric synchronization of coupled oscillators and its application for creating a neural network information converter. Electronics 2019, 8, 756.

[199]

Ding, Y. T.; Zhang, Y. J.; Zhang, X. M.; Chen, P.; Zhang, Z. F.; Yang, Y.; Cheng, L. L.; Mu, C.; Wang, M.; Xiang, D. et al. Engineering spiking neurons using threshold switching devices for high-efficient neuromorphic computing. Front. Neurosci. 2021, 15, 786694.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2022
Revised: 13 July 2022
Accepted: 14 July 2022
Published: 23 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research & Development Plan “Nano Frontier” Key Special Project (No. 2021YFA1200502), Cultivation projects of national major Research & Development project (No. 92164109), the National Natural Science Foundation of China (Nos. 61874158, 62004056, and 62104058), Special project of strategic leading science and technology of Chinese Academy of Sciences (No. XDB44000000-7), Hebei Basic Research Special Key Project (No. F2021201045), Support Program for the Top Young Talents of Hebei Province (No. 70280011807), Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (No. SLRC2019018), Interdisciplinary Research Program of Natural Science of Hebei University (No. DXK202101), Institute of Life Sciences and Green Development (No. 521100311), Natural Science Foundation of Hebei Province (Nos. F2022201054 and F2021201022), Outstanding Young Scientific Research and Innovation Team of Hebei University (No. 605020521001), Special Support Funds for National High Level Talents (No. 041500120001), Advanced Talents Incubation Program of the Hebei University (Nos. 521000981426, 521100221071, and 521000981363), and Funded by Science and Technology Project of Hebei Education Department (Nos. QN2020178 and QN2021026).

Return