Journal Home > Volume 16 , Issue 1

CO2 electroreduction has been regarded as an appealing strategy for renewable energy storage. Recently, bismuth (Bi) electrocatalysts have attracted much attention due to their excellent formate selectivity. However, many reported Bi electrocatalysts suffer from low current densities, which are insufficient for industrial applications. To reach the goal of high current CO2 reduction to formate, we fabricate Bi nanosheets (NS) with high activity through edge/terrace control and defect engineering strategy. Bi NS with preferential exposure sites are obtained by topotactic transformation, and the processes are clearly monitored by in-situ Raman and ex-situ X-ray diffraction (XRD). Bi NS-1 with a high fraction of edge sites and defect sites exhibits excellent performance, and the current density is up to ca. 870 mA·cm−2 in the flow cell, far above the industrially applicable level (100 mA·cm−2), with a formate Faradaic efficiency greater than 90%. In-situ Fourier transform infrared (FT-IR) spectra detect *OCHO, and theoretical calculations reveal that the formation energy of *OCHO on edges is lower than that on terraces, while the defects on edges further reduce the free energy changes (ΔG). The differential charge density spatial distributions reveal that the presence of defects on edges causes charge enrichment around the C–H bond, benefiting the stabilization of the *OCHO intermediate, thus remarkably lowering the ΔG.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High current CO2 reduction realized by edge/defect-rich bismuth nanosheets

Show Author's information Jiaqi Xu1Siheng Yang1Li Ji2Jiawei Mao3Wei Zhang1Xueli Zheng1Haiyan Fu1Maolin Yuan1Chengkai Yang4Hua Chen1Ruixiang Li1( )
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
Sichuan Research Institute of Chemical Quality and Safety Testing, Chengdu 610031, China
Sichuan Institute of Product Quality Supervision and Inspection, Chengdu 610100, China
Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China

Abstract

CO2 electroreduction has been regarded as an appealing strategy for renewable energy storage. Recently, bismuth (Bi) electrocatalysts have attracted much attention due to their excellent formate selectivity. However, many reported Bi electrocatalysts suffer from low current densities, which are insufficient for industrial applications. To reach the goal of high current CO2 reduction to formate, we fabricate Bi nanosheets (NS) with high activity through edge/terrace control and defect engineering strategy. Bi NS with preferential exposure sites are obtained by topotactic transformation, and the processes are clearly monitored by in-situ Raman and ex-situ X-ray diffraction (XRD). Bi NS-1 with a high fraction of edge sites and defect sites exhibits excellent performance, and the current density is up to ca. 870 mA·cm−2 in the flow cell, far above the industrially applicable level (100 mA·cm−2), with a formate Faradaic efficiency greater than 90%. In-situ Fourier transform infrared (FT-IR) spectra detect *OCHO, and theoretical calculations reveal that the formation energy of *OCHO on edges is lower than that on terraces, while the defects on edges further reduce the free energy changes (ΔG). The differential charge density spatial distributions reveal that the presence of defects on edges causes charge enrichment around the C–H bond, benefiting the stabilization of the *OCHO intermediate, thus remarkably lowering the ΔG.

Keywords: defect engineering, CO2 electroreduction, bismuth nanosheet, topotactic transformation

References(65)

[1]

Service, R. F. Clean revolution. Science 2015, 350, 1020–1023.

[2]

Schiermeier, Q. Germany’s renewable revolution awaits energy forecast. Nature 2016, 535, 212–213.

[3]

Xu, S. Q. The paradox of the energy revolution in China: A socio-technical transition perspective. Renew. Sustainable Energ. Rev. 2021, 137, 110469.

[4]

Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; Van De Lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

[5]

An, L.; Chen, R. Direct formate fuel cells: A review. J. Power Sources 2016, 320, 127–139.

[6]

Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. 2020, 132, 15124–15130.

[7]

Fan, J.; Zhao, X.; Mao, X. N.; Xu, J.; Han, N.; Yang, H.; Pan, B. B.; Li, Y. S.; Wang, L.; Li, Y. G. Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion. Adv. Mater. 2021, 33, 2100910.

[8]

Fu, X. B.; Wang, J. A.; Hu, X. B.; He, K.; Tu, Q.; Yue, Q.; Kang, Y. J. Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel. Adv. Funct. Mater. 2022, 32, 2107182.

[9]

Fan, L.; Xia, C.; Zhu, P.; Lu, Y. Y.; Wang, H. T. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 2020, 11, 3633.

[10]

De Arquer, F. P. G.; Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Seifitokaldani, A.; Saidaminov, M. I.; Tan, C. S.; Quan, L. N.; Proppe, A.; Kibria, M. G. et al. 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 2018, 30, 1802858.

[11]

Yi, L. C.; Chen, J. X.; Shao, P.; Huang, J. H.; Peng, X. X.; Li, J. W.; Wang, G. X.; Zhang, C.; Wen, Z. H. Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem. 2020, 132, 20287–20294.

[12]

Zhang, M.; Wei, W. B.; Zhou, S. H.; Ma, D. D.; Cao, A. H.; Wu, X. T.; Zhu, Q. L. Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 2021, 14, 4998–5008.

[13]

Yang, F.; Elnabawy, A. O.; Schimmenti, R.; Song, P.; Wang, J. W.; Peng, Z. Q.; Yao, S.; Deng, R. P.; Song, S. Y.; Lin, Y. et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088.

[14]

Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

[15]

Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem. 2019, 131, 13966–13971.

[16]

He, S. S.; Ni, F. L.; Ji, Y. J.; Wang, L.; Wen, Y. Z.; Bai, H. P.; Liu, G. J.; Zhang, Y.; Li, Y. Y.; Zhang, B. et al. The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. 2018, 130, 16346–16351.

[17]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Zhao, P. Y.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Ma, J.; Liu, J. et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816.

[18]

Wu, D.; Liu, J. W.; Liang, Y.; Xiang, K.; Fu, X. Z.; Luo, J. L. Electrochemical transformation of facet-controlled BiOI into mesoporous bismuth nanosheets for selective electrocatalytic reduction of CO2 to formic acid. ChemSusChem 2019, 12, 4700–4707.

[19]

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

[20]

Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

[21]

Yuan, W. W.; Wu, J. X.; Zhang, X. D.; Hou, S. Z.; Xu, M.; Gu, Z. Y. In situ transformation of bismuth metal-organic frameworks for efficient selective electroreduction of CO2 to formate. J. Mater. Chem. A 2020, 8, 24486–24492.

[22]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[23]
ZengG.HeY. C.MaD. D.LuoS. W.ZhouS. H.CaoC. S.LiX. F.WuX. T.LiaoH. G.ZhuQ. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formateAdv. Funct. Mater.202232210524610.1002/adfm.202201125

Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2105246.

[24]

He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Integrated 3D open network of interconnected bismuthene arrays for energy-efficient and electrosynthesis-assisted electrocatalytic CO2 reduction. Small 2022, 18, 2105246.

[25]

Cao, C. S.; Xu, Q.; Zhu, Q. L. Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catal. 2022, 2, 693–723.

[26]

Liu, G. P.; Wang, B.; Zhu, X. W.; Ding, P. H.; Zhao, J. Z.; Li, H. M.; Chen, Z. R.; Zhu, W. S.; Xia, J. X. Edge-site-rich ordered macroporous BiOCl triggers C=O activation for efficient CO2 photoreduction. Small 2022, 18, 2105228.

[27]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[28]

Ye, G. L.; Gong, Y. J.; Lin, J. H.; Li, B.; He, Y. M.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano Lett. 2016, 16, 1097–1103.

[29]
RasouliA. S.WangX.WicksJ.LeeG.PengT.LiF. W.McCallumC.DinhC. T.IpA. H.SintonD. CO2 electroreduction to methane at production rates exceeding 100 mA/cm2ACS Sustainable Chem. Eng.20208146681467310.1021/acssuschemeng.0c03453

Rasouli, A. S.; Wang, X.; Wicks, J.; Lee, G.; Peng, T.; Li, F. W.; McCallum, C.; Dinh, C. T.; Ip, A. H.; Sinton, D. et al. CO2 electroreduction to methane at production rates exceeding 100 mA/cm2. ACS Sustainable Chem. Eng. 2020, 8, 14668–14673.

[30]

Gabardo, C. M.; O’Brien, C. P.; Edwards, J. P.; McCallum, C.; Xu, Y.; Dinh, C. T.; Li, J.; Sargent, E. H.; Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3, 2777–2791.

[31]
ZhaoC. M.LuoG.LiuX. K.ZhangW.LiZ. J.XuQ.ZhangQ. H.WangH. J.LiD. M.ZhouF. Y. In situ topotactic transformation of an interstitial alloy for CO electroreductionAdv. Mater.202032200238210.1002/adma.202002382

Zhao, C. M.; Luo, G.; Liu, X. K.; Zhang, W.; Li, Z. J.; Xu, Q.; Zhang, Q. H.; Wang, H. J.; Li, D. M.; Zhou, F. Y. et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction. Adv. Mater. 2020, 32, 2002382.

[32]

Caratelli, C.; Hajek, J.; Cirujano, F. G.; Waroquier, M.; Xamena, F. X. L. I.; Van Speybroeck, V. Nature of active sites on UiO-66 and beneficial influence of water in the catalysis of Fischer esterification. J. Catal. 2017, 352, 401–414.

[33]

Wang, X.; Wang, Z. Y.; De Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

[34]

Ma, W. C.; Xie, S. J.; Liu, T. T.; Fan, Q. Y.; Ye, J. Y.; Sun, F. F.; Jiang, Z.; Zhang, Q. H.; Cheng, J.; Wang, Y. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 2020, 3, 478–487.

[35]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[36]

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 2010, 132, 16501–16509.

[37]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[38]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel–cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[39]

Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.

[40]

Ringe, S.; Hörmann, N. G.; Oberhofer, H.; Reuter, K. Implicit solvation methods for catalysis at electrified interfaces. Chem. Rev. 2022, 122, 10777–10820.

[41]

Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 2014, 140, 084106.

[42]

Christensen, R.; Hansen, H. A.; Vegge, T. Identifying systematic DFT errors in catalytic reactions. Catal. Sci. Technol. 2015, 5, 4946–4949.

[43]

Granda-Marulanda, L. P.; Rendon-Calle, A.; Builes, S.; Illas, F.; Koper, M. T. M.; Calle-Vallejo, F. A semiempirical method to detect and correct DFT-based gas-phase errors and its application in electrocatalysis. ACS Catal. 2020, 10, 6900–6907.

[44]

Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

[45]

Li, Y. X.; Hui, D. P.; Sun, Y. Q.; Wang, Y.; Wu, Z. J.; Wang, C. Y.; Zhao, J. C. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat. Commun. 2021, 12, 123.

[46]

Zhang, B.; Ye, X. C.; Hou, W. Y.; Zhao, Y.; Xie, Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. J. Phys. Chem. B 2006, 110, 8978–8985.

[47]

Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J. N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194–1201.

[48]

Zhang, D.; Li, J.; Wang, Q. G.; Wu, Q. S. High {001} facets dominated BiOBr lamellas: Facile hydrolysis preparation and selective visible-light photocatalytic activity. J. Mater. Chem. A 2013, 1, 8622–8629.

[49]

Zepeda, M. A.; Picquart, M.; Haro-Poniatowski, E. Laser induced oxidation effects in bismuth thin films. MRS Online Proc. Libr. 2012, 1477, 28–33.

[50]

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

[51]

Freund, H. J.; Libuda, J.; Bäumer, M.; Risse, T.; Carlsson, A. Cluster, facets, and edges: Site-dependent selective chemistry on model catalysts. Chem. Rec. 2003, 3, 181–201.

[52]

Stevenson, H. P.; Lin, G. W.; Barnes, C. O.; Sutkeviciute, I.; Krzysiak, T.; Weiss, S. C.; Reynolds, S.; Wu, Y.; Nagarajan, V.; Makhov, A. M. et al. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr. D Struct. Biol. 2016, 72, 603–615.

[53]

Yang, C. K.; Shao, R. W.; Wang, Q.; Zhou, T. Y.; Lu, J.; Jiang, N.; Gao, P.; Liu, W.; Yu, Y.; Zhou, H. H. Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism. Energy Storage Mater. 2021, 35, 62–69.

[54]

Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 Nanosheets. Angew. Chem., Int. Ed. 2021, 60, 13840–13846.

[55]

Sun, W. B.; Wei, Z. M.; Qi, J. D.; Kang, L. Y.; Li, J. C.; Xie, J. F.; Tang, B.; Xie, Y. Rapid and scalable synthesis of Prussian blue analogue nanocubes for electrocatalytic water oxidation. Chin. J. Chem. 2021, 39, 2347–2353.

[56]

Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888.

[57]

Xu, J. Q.; Li, X. D.; Liu, W.; Sun, Y. F.; Ju, Z. Y.; Yao, T.; Wang, C. M.; Ju, H. X.; Zhu, J. F.; Wei, S. Q. et al. Carbon dioxide electroreduction into syngas boosted by a partially delocalized charge in molybdenum sulfide selenide alloy monolayers. Angew. Chem., Int. Ed. 2017, 56, 9121–9125.

[58]

Lei, F. C.; Tang, Z.; Xu, W. L.; Yu, J.; Li, K.; Yu, J. C. Electronic optimization by coupling feco nanoclusters and Pt nanoparticles to carbon nanotubes for efficient hydrogen evolution. ACS Sustainable Chem. Eng. 2021, 9, 5895–5901.

[59]

Yan, S.; Peng, C.; Yang, C.; Chen, Y. S.; Zhang, J. B.; Guan, A. X.; Lv, X. M.; Wang, H. Z.; Wang, Z. Q.; Sham, T. K. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere-level electrosynthesis of formate from CO2. Angew. Chem. 2021, 133, 25945–25949.

[60]

Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[61]

Fan, L.; Liu, C. Y.; Zhu, P.; Xia, C.; Zhang, X.; Wu, Z. Y.; Lu, Y. Y.; Senftle, T. P.; Wang, H. T. Proton sponge promotion of electrochemical CO2 reduction to multi-carbon products. Joule 2022, 6, 205–220.

[62]

Singh, M. R.; Kwon, Y.; Lum, Y.; Ager III, J. W.; Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 2016, 138, 13006–13012.

[63]

Zhang, J.; Luo, W.; Züttel, A. Crossover of liquid products from electrochemical CO2 reduction through gas diffusion electrode and anion exchange membrane. J. Catal. 2020, 385, 140–145.

[64]

Kwon, S.; Lin, T. C.; Iglesia, E. Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. J. Catal. 2020, 383, 60–76.

[65]
ChenT.WuG. P.FengZ. C.HuG. S.SuW. G.YingP. L.LiC. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalystChin. J. Catal.20082910510710.1016/S1872-2067(08)60019-4

Chen, T.; Wu, G. P.; Feng, Z. C.; Hu, G. S.; Su, W. G.; Ying, P. L.; Li, C. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalyst. Chin. J. Catal. 2008, 29, 105–107.

File
12274_2022_4770_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 May 2022
Revised: 19 June 2022
Accepted: 12 July 2022
Published: 17 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22105133 and 22101191), China Postdoctoral Science Foundation (Nos. BX20190222, 2019M663490, and 2021M692261), the Fundamental Research Funds for the Central Universities (Nos. 20826041E4211, 20826041E4258, 20826041E4212, 2021SCU12150 and 2021SCU12151), the China Scholarship Council, and Sichuan Science and Technology Program (No. 2021YJ0405). We thank Ms. Yue Qi of the Comprehensive Training Platform of the Specialized Laboratory in the College of Chemistry at Sichuan University, Dr. Daibing Luo and Dr. Daichuan Ma from the Analytical & Testing Center of Sichuan University for X-ray diffraction work. National Supercomputing Center in Shenzhen is acknowledged for computational support.

Return