Journal Home > Volume 16 , Issue 3

As an emerging class of semiconducting transition metal dichalcogenides (TMDCs), two-dimensional (2D) rhenium dichalcogenides (ReX2, X = S or Se) have recently aroused great research interest due to their unique anisotropic structure (1T′ phase), and the related novel properties and applications. Recently, many efforts have been devoted to the controllable syntheses of high-quality monolayer or few-layer ReX2 flakes/films by chemical vapor deposition (CVD), wherein the metallic Au foil is found to be a unique substrate, due to the relatively strong interfacial coupling between monolayer ReX2 and Au. And the conductive nature of Au enables in situ characterizations of the as-grown ReX2 samples, which is essential for exploring the fundamental properties and internal growth mechanisms. Hereby, this review focuses on the recent progresses on the CVD syntheses and in situ characterizations of high-quality monolayer ReX2 flakes/films and their heterostructures with graphene on Au foils. The effects of Au foils on improving the crystal quality and inducing the growth of monolayer ReX2 single crystals are intensively addressed. The crystallinity, domain morphology, atomic and electronic structures, as well as the growth behaviors of monolayer ReX2 flakes/films and graphene/ReX2 heterostructures on Au revealed by in situ characterization techniques are also highlighted. As contrasts, the growth behaviors of monolayer or few-layer ReX2 on insulating substrates are also discussed. Besides, the potential applications of 2D ReX2 in new-generation electronic, optoelectronic devices, and energy-related fields are also introduced. Finally, future research directions are also prospected for propelling the practical applications of 2D ReX2 materials in more versatile fields.


menu
Abstract
Full text
Outline
About this article

Anisotropic monolayer of ReX2 on Au foils for exploring abnormal growth behavior and electronic properties

Show Author's information Wenzhi Quan1,§Shuangyuan Pan2,§Fan Zhou1Yanfeng Zhang1,2( )
Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China

§ Wenzhi Quan and Shuangyuan Pan contributed equally to this work.

Abstract

As an emerging class of semiconducting transition metal dichalcogenides (TMDCs), two-dimensional (2D) rhenium dichalcogenides (ReX2, X = S or Se) have recently aroused great research interest due to their unique anisotropic structure (1T′ phase), and the related novel properties and applications. Recently, many efforts have been devoted to the controllable syntheses of high-quality monolayer or few-layer ReX2 flakes/films by chemical vapor deposition (CVD), wherein the metallic Au foil is found to be a unique substrate, due to the relatively strong interfacial coupling between monolayer ReX2 and Au. And the conductive nature of Au enables in situ characterizations of the as-grown ReX2 samples, which is essential for exploring the fundamental properties and internal growth mechanisms. Hereby, this review focuses on the recent progresses on the CVD syntheses and in situ characterizations of high-quality monolayer ReX2 flakes/films and their heterostructures with graphene on Au foils. The effects of Au foils on improving the crystal quality and inducing the growth of monolayer ReX2 single crystals are intensively addressed. The crystallinity, domain morphology, atomic and electronic structures, as well as the growth behaviors of monolayer ReX2 flakes/films and graphene/ReX2 heterostructures on Au revealed by in situ characterization techniques are also highlighted. As contrasts, the growth behaviors of monolayer or few-layer ReX2 on insulating substrates are also discussed. Besides, the potential applications of 2D ReX2 in new-generation electronic, optoelectronic devices, and energy-related fields are also introduced. Finally, future research directions are also prospected for propelling the practical applications of 2D ReX2 materials in more versatile fields.

Keywords: chemical vapor deposition, scanning tunneling microscopy/spectroscopy, Au, electronic properties, rhenium dichalcogenides (ReX2), growth behavior

References(76)

[1]

Liu, Y.; Duan, X. D.; Shin, H. J.; Park, S.; Huang, Y.; Duan, X. F. Promises and prospects of two-dimensional transistors. Nature 2021, 591, 43–53.

[2]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[3]

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

[4]

Zhong, H. X.; Gao, S. Y.; Shi, J. J.; Yang, L. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 2015, 92, 115438.

[5]

Liu, E. F.; Fu, Y. J.; Wang, Y. J.; Feng, Y. Q.; Liu, H. M.; Wan, X. G.; Zhou, W.; Wang, B. G.; Shao, L. B.; Ho, C. H. et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.

[6]

Sim, S.; Lee, D.; Noh, M.; Cha, S.; Soh, C. H.; Sung, J. H.; Jo, M. H.; Choi, H. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2. Nat. Commun. 2016, 7, 13569.

[7]

Chenet, D. A.; Aslan, O. B.; Huang, P. Y.; Fan, C.; van der Zande, A. M.; Heinz, T. F.; Hone, J. C. In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy. Nano Lett. 2015, 15, 5667–5672.

[8]

Ovchinnikov, D.; Gargiulo, F.; Allain, A.; Pasquier, D. J.; Dumcenco, D.; Ho, C. H.; Yazyev, O. V.; Kis, A. Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nat. Commun. 2016, 7, 12391.

[9]

Liu, F. C.; Zheng, S. J.; He, X. X.; Chaturvedi, A.; He, J. F.; Chow, W. L.; Mion, T. R.; Wang, X. L.; Zhou, J. D.; Fu, Q. D. et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169–1177.

[10]

Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

[11]

Zhang, Q.; Tan, S. J.; Mendes, R. G.; Sun, Z. T.; Chen, Y. T.; Kong, X.; Xue, Y. H.; Rümmeli, M. H.; Wu, X. J.; Chen, S. L. et al. Extremely weak van der Waals coupling in vertical ReS2 nanowalls for high-current-density lithium-ion batteries. Adv. Mater. 2016, 28, 2616–2623.

[12]

Zhang, Q.; Fu, L. Novel insights and perspectives into weakly coupled ReS2 toward emerging applications. Chem 2019, 5, 505–525.

[13]

Keyshar, K.; Gong, Y. J.; Ye, G. L.; Brunetto, G.; Zhou, W.; Cole, D. P.; Hackenberg, K.; He, Y. M.; Machado, L.; Kabbani, M. et al. Chemical vapor deposition of monolayer rhenium disulfide (ReS2). Adv. Mater. 2015, 27, 4640–4648.

[14]

Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 2016, 28, 5019–5024.

[15]

Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.

[16]

Wu, K. D.; Chen, B.; Yang, S. J.; Wang, G.; Kong, W.; Cai, H.; Aoki, T.; Soignard, E.; Marie, X.; Yano, A. et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett. 2016, 16, 5888–5894.

[17]

Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors. Adv. Funct. Mater. 2016, 26, 4551–4560.

[18]

Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 2017, 10, 2732–2742.

[19]

Jiang, S. L.; Zhang, Z. P.; Zhang, N.; Huan, Y. H.; Gong, Y.; Sun, M. X.; Shi, J. P.; Xie, C. Y.; Yang, P. F.; Fang, Q. Y. et al. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res. 2018, 11, 1787–1797.

[20]

Li, X. B.; Wang, X.; Hong, J. H.; Liu, D. Y.; Feng, Q. L.; Lei, Z. B.; Liu, K. H.; Ding, F.; Xu, H. Nanoassembly growth model for subdomain and grain boundary formation in 1T′ layered ReS2. Adv. Funct. Mater. 2019, 29, 1906385.

[21]

He, Q. M.; Zhou, J. P.; Tang, W. Q.; Hao, Y. F.; Sun, L. T.; Zhu, C. Y.; Xu, F.; Chen, J. J.; Wu, Y. P.; Wu, Z. M. et al. Deeply exploring anisotropic evolution toward large-scale growth of monolayer ReS2. ACS Appl. Mater. Interfaces 2020, 12, 2862–2870.

[22]

Shi, J. P.; Zhang, X. N.; Ma, D. L.; Zhu, J. B.; Zhang, Y.; Guo, Z. X.; Yao, Y.; Ji, Q. Q.; Song, X. J.; Zhang, Y. S. et al. Substrate facet effect on the growth of monolayer MoS2 on Au Foils. ACS Nano 2015, 9, 4017–4025.

[23]

Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.

[24]

Yang, P. F.; Zhang, S. Q.; Pan, S. Y.; Tang, B.; Liang, Y.; Zhao, X. X.; Zhang, Z. P.; Shi, J. P.; Huan, Y. H.; Shi, Y. P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111). ACS Nano 2020, 14, 5036–5045.

[25]

Choi, S. H.; Kim, H. J.; Song, B.; Kim, Y. I.; Han, G.; Nguyen, H. T. T.; Ko, H.; Boandoh, S.; Choi, J. H.; Oh, C. S. et al. Epitaxial single-crystal growth of transition metal dichalcogenide monolayers via the atomic sawtooth Au surface. Adv. Mater. 2021, 33, 2006601.

[26]

Shi, J. P.; Liu, M. X.; Wen, J. X.; Ren, X. B.; Zhou, X. B.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Jin, C. H.; Chen, H. J. et al. All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures. Adv. Mater. 2015, 27, 7086–7092.

[27]

Zhang, Z. P.; Ji, X. J.; Shi, J. P.; Zhou, X. B.; Zhang, S.; Hou, Y.; Qi, Y.; Fang, Q. Y.; Ji, Q. Q.; Zhang, Y. et al. Direct chemical vapor deposition growth and band-gap characterization of MoS2/h-BN van der Waals heterostructures on Au Foils. ACS Nano 2017, 11, 4328–4336.

[28]

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

[29]

Liu, M. X.; Shi, J. P.; Li, Y. C.; Zhou, X. B.; Ma, D. L.; Qi, Y.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered sulfur vacancy evolution in monolayer MoS2/graphene heterostructures. Small 2017, 13, 1602967.

[30]

Zhao, H.; Wu, J. B.; Zhong, H. X.; Guo, Q. S.; Wang, X. M.; Xia, F. N.; Yang, L.; Tan, P. H.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651–3661.

[31]

Biswas, D.; Ganose, A. M.; Yano, R.; Riley, J. M.; Bawden, L.; Clark, O. J.; Feng, J.; Collins-Mcintyre, L.; Sajjad, M. T.; Meevasana, W. et al. Narrow-band anisotropic electronic structure of ReS2. Phys. Rev. B 2017, 96, 085205.

[32]

Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.

[33]

Li, X. B.; Dai, X. Y.; Tang, D. Q.; Wang, X.; Hong, J. H.; Chen, C.; Yang, Y.; Lu, J. B.; Zhu, J. G.; Lei, Z. B. et al. Realizing the intrinsic anisotropic growth of 1T′ ReS2 on selected Au (101) substrate toward large-scale single crystal fabrication. Adv. Funct. Mater. 2021, 31, 2102138.

[34]

Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res. 2019, 12, 149–157.

[35]

Hong, M.; Zhou, X. B.; Gao, N.; Jiang, S. L.; Xie, C. Y.; Zhao, L. Y.; Gao, Y.; Zhang, Z. P.; Yang, P. F.; Shi, Y. P. et al. Identifying the non-identical outermost selenium atoms and invariable band gaps across the grain boundary of anisotropic rhenium diselenide. ACS Nano 2018, 12, 10095–10103.

[36]

Kertesz, M.; Hoffmann, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460.

[37]

Fang, Y. Q.; Pan, J.; He, J. Q.; Luo, R. C.; Wang, D.; Che, X. L.; Bu, K. J.; Zhao, W.; Liu, P.; Mu, G. et al. Structure Re-determination and superconductivity observation of bulk 1T MoS2. Angew. Chem., Int. Ed. 2018, 57, 1232–1235.

[38]

Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-Layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

[39]

Aslan, O. B.; Chenet, D. A.; van der Zande, A. M.; Hone, J. C.; Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 2016, 3, 96–101.

[40]

Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.

[41]

Velický, M.; Donnelly, G. E.; Hendren, W. R.; McFarland, S.; Scullion, D.; DeBenedetti, W. J. I.; Correa, G. C.; Han, Y. M.; Wain, A. J.; Hines, M. A. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 2018, 12, 10463–10472.

[42]

Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453.

[43]

Cai, H.; Chen, B.; Wang, G.; Soignard, E.; Khosravi, A.; Manca, M.; Marie, X.; Chang, S. L. Y.; Urbaszek, B.; Tongay, S. Synthesis of highly anisotropic semiconducting GaTe nanomaterials and emerging properties enabled by epitaxy. Adv. Mater. 2017, 29, 1605551.

[44]

Zhu, M. J.; Zhao, Y.; Feng, Q. L.; Lu, H.; Zhang, S. Q.; Zhang, N.; Ma, C. J.; Li, J. F.; Zheng, J. B.; Zhang, J. et al. Linear dichroism and nondestructive crystalline identification of anisotropic semimetal few-layer MoTe2. Small 2019, 15, 1903159.

[45]

Jariwala, B.; Thamizhavel, A.; Bhattacharya, A. ReSe2: A reassessment of crystal structure and thermal analysis. J. Phys. D. Appl. Phys. 2017, 50, 044001.

[46]

Huang, Y. L.; Chen, Y. F.; Zhang, W. J.; Quek, S. Y.; Chen, C. H.; Li, L. J.; Hsu, W. T.; Chang, W. H.; Zheng, Y. J.; Chen, W. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298.

[47]

Zhou, X. B.; Shi, J. P.; Qi, Y.; Liu, M. X.; Ma, D. L.; Zhang, Y.; Ji, Q. Q.; Zhang, Z. P.; Li, C.; Liu, Z. F. et al. Periodic modulation of the doping level in striped MoS2 superstructures. ACS Nano 2016, 10, 3461–3468.

[48]

Zhang, C. D.; Johnson, A.; Hsu, C. L.; Li, L. J.; Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 2014, 14, 2443–2447.

[49]

Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.

[50]

Lin, Y. C.; Komsa, H. P.; Yeh, C. H.; Björkman, T.; Liang, Z. Y.; Ho, C. H.; Huang, Y. S.; Chiu, P. W.; Krasheninnikov, A. V.; Suenaga, K. Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249–11257.

[51]

Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

[52]

Yang, B.; Xu, H.; Lu, J.; Loh, K. P. Periodic grain boundaries formed by thermal reconstruction of polycrystalline graphene film. J. Am. Chem. Soc. 2014, 136, 12041–12046.

[53]

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

[54]

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

[55]

Yu, W.; Wang, Z. S.; Zhao, X. X.; Wang, J. Y.; Herng, T. S.; Ma, T.; Zhu, Z. Y.; Ding, J.; Eda, G.; Pennycook, S. J. et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 2020, 30, 2003057.

[56]

Zheng, F. Y.; Huang, L. L.; Wong, L. W.; Han, J.; Cai, Y.; Wang, N.; Deng, Q. M.; Ly, T. H.; Zhao, J. The mobile and pinned grain boundaries in 2D monoclinic rhenium disulfide. Adv. Sci. 2020, 7, 2001742.

[57]

Wang, S. S.; Yu, Y.; Zhang, S. Q.; Zhang, S. S.; Xu, H.; Zou, X. L.; Zhang, J. Atomic-scale studies of overlapping grain boundaries between parallel and quasi-parallel grains in low-symmetry monolayer ReS2. Matter 2020, 3, 2108–2123.

[58]

Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q. Y.; Gu, L.; Wang, X. N. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au Foils for direct photocatalytic applications. Adv. Mater. 2016, 28, 10664–10672.

[59]

Shi, J. P.; Zhou, X. B.; Han, G. F.; Liu, M. X.; Ma, D. L.; Sun, J. Y.; Li, C.; Ji, Q. Q.; Zhang, Y.; Song, X. J. et al. Narrow-gap quantum wires arising from the edges of monolayer MoS2 synthesized on graphene. Adv. Mater. Interfaces 2016, 3, 1600332.

[60]

Lyo, I. W.; Avouris, P. Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM. Science 1991, 253, 173–176.

[61]

Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.

[62]

Rubio-Verdú, C.; Sáenz-Arce, G.; Martinez-Asencio, J.; Milan, D. C.; Moaied, M.; Palacios, J. J.; Caturla, M. J.; Untiedt, C. Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip. Phys. Chem. Chem. Phys. 2017, 19, 8061–8068.

[63]

Zhang, T.; Jiang, B.; Xu, Z.; Mendes, R. G.; Xiao, Y.; Chen, L. F.; Fang, L. W.; Gemming, T.; Chen, S. L.; Rümmeli, M. H. et al. Twinned growth behaviour of two-dimensional materials. Nat. Commun. 2016, 7, 13911.

[64]

Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 Nanosheets. ACS Nano 2016, 10, 8067–8077.

[65]

He, X. W.; Wang, X.; Nanot, S.; Cong, K. K.; Jiang, Q. J.; Kane, A. A.; Goldsmith, J. E. M.; Hauge, R. H.; Léonard, F.; Kono, J. Photothermoelectric p-n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 2013, 7, 7271–7277.

[66]

Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.

[67]

An, C. H.; Xu, Z. H.; Shen, W. F.; Zhang, R. J.; Sun, Z. Y.; Tang, S. J.; Xiao, Y. F.; Zhang, D. H.; Sun, D.; Hu, X. D. et al. The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 2019, 13, 3310–3319.

[68]

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

[69]

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13, 1341–1347.

[70]

Gao, J.; Li, L.; Tan, J. W.; Sun, H.; Li, B. C.; Idrobo, J. C.; Singh, C. V.; Lu, T. M.; Koratkar, N. Vertically oriented arrays of ReS2 Nanosheets for electrochemical energy storage and electrocatalysis. Nano Lett. 2016, 16, 3780–3787.

[71]

Zhang, D. D.; Du, J. H.; Hong, Y. L.; Zhang, W. M.; Wang, X.; Jin, H.; Burn, P. L.; Yu, J. S.; Chen, M. L.; Sun, D. M. et al. A double support layer for facile clean transfer of two-dimensional materials for high-performance electronic and optoelectronic devices. ACS Nano 2019, 13, 5513–5522.

[72]

Shen, Y. C.; Wu, Y. T.; Lee, L.; Chen, J. H.; Wani, S. S.; Yang, T. Y.; Luo, C. W.; Siao, M. D.; Yu, Y. J.; Chiu, P. W. et al. Rational design on wrinkle-less transfer of transition metal dichalcogenide monolayer by adjustable wettability-assisted transfer method. Adv. Funct. Mater. 2021, 31, 2104978.

[73]

Xiao, Y.; Zhang, T.; Zhou, M. Y.; Weng, Z.; Chang, X. J.; Yang, K. N.; Liu, J. L.; Li, J. T.; Wei, B.; Wang, Z. C. et al. Disassembly of 2D vertical heterostructures. Adv. Mater. 2019, 31, 1805976.

[74]

Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 2009, 81, 1495–1550.

[75]

Edelberg, D.; Kumar, H.; Shenoy, V.; Ochoa, H.; Pasupathy, A. N. Tunable strain soliton networks confine electrons in van der Waals materials. Nat. Phys. 2020, 16, 1097–1102.

[76]

Huang, J. W.; Gao, H. G.; Xia, Y. F.; Sun, Y. H.; Xiong, J.; Li, Y. R.; Cong, S.; Guo, J.; Du, S. Y.; Zou, G. F. Enhanced photoelectrochemical performance of defect-rich ReS2 nanosheets in visible-light assisted hydrogen generation. Nano Energy 2018, 46, 305–313.

Publication history
Copyright
Acknowledgements

Publication history

Received: 28 May 2022
Revised: 28 June 2022
Accepted: 10 July 2022
Published: 24 August 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work was supported by the National Key Research and Development Program of China (No. 2018YFA0703700), the National Natural Science Foundation of China (Nos. 51925201, 51991344, 51991340, and 52021006), and the Open Research Fund Program of the State Key Laboratory of Low Dimensional Quantum Physics (No. KF202011).

Return