Journal Home > Volume 16 , Issue 1

Light-matter interactions in low-dimensional quantum-confined structures can dominate the optical properties of the materials and lead to optoelectronic applications. In anisotropic layered silicon diphosphide (SiP2) crystal, the embedded quasi-one-dimensional (1D) phosphorus–phosphorus (P–P) chains directly result in an unconventional quasi-1D excitonic state, and a special phonon mode vibrating along the P–P chains, establishing a unique 1D quantum-confined system. Alloying SiP2 with the homologous element serves as an effective way to study the properties of these excitons and phonons associated with the quasi-1D P–P chains, as well as the strong interaction between these quasiparticles. However, the experimental observation and the related optical spectral understanding of SiP2 with isoelectronic dopants remain elusive. Herein, with the photoluminescence and Raman spectroscopy measurements, we demonstrate the redshift of the confined excitonic peak and the stiffening of the phonon vibration mode B1g3 of a series of Si(P1−xAsx)2 alloys with increasing arsenic (As) compositions. This anomalous stiffening of B1g3 is attributed to the selective substitution of As atoms for P atoms within the P–P chains, which is confirmed via our scanning transmission electron microscopy investigation. Such optical spectra evolutions with selective substitution pave a new way to understand the 1D quantum confinement in semiconductors, offering opportunities to explore quasi-1D characteristics in SiP2 and the resulting photonic device application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Selective substitution induced anomalous phonon stiffening within quasi-one-dimensional P–P chains in SiP2

Show Author's information Xueting Dai1Feng Qin1Caiyu Qiu1Ling Zhou1Junwei Huang1Fanghua Cheng1Xiangyu Bi1Caorong Zhang1Zeya Li1Ming Tang1Shengqiang Wu2Xiaoxu Zhao2( )Yangfan Lu3( )Huiyang Gou4Hongtao Yuan1( )
National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210000, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China
College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030, China
Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China

Abstract

Light-matter interactions in low-dimensional quantum-confined structures can dominate the optical properties of the materials and lead to optoelectronic applications. In anisotropic layered silicon diphosphide (SiP2) crystal, the embedded quasi-one-dimensional (1D) phosphorus–phosphorus (P–P) chains directly result in an unconventional quasi-1D excitonic state, and a special phonon mode vibrating along the P–P chains, establishing a unique 1D quantum-confined system. Alloying SiP2 with the homologous element serves as an effective way to study the properties of these excitons and phonons associated with the quasi-1D P–P chains, as well as the strong interaction between these quasiparticles. However, the experimental observation and the related optical spectral understanding of SiP2 with isoelectronic dopants remain elusive. Herein, with the photoluminescence and Raman spectroscopy measurements, we demonstrate the redshift of the confined excitonic peak and the stiffening of the phonon vibration mode B1g3 of a series of Si(P1−xAsx)2 alloys with increasing arsenic (As) compositions. This anomalous stiffening of B1g3 is attributed to the selective substitution of As atoms for P atoms within the P–P chains, which is confirmed via our scanning transmission electron microscopy investigation. Such optical spectra evolutions with selective substitution pave a new way to understand the 1D quantum confinement in semiconductors, offering opportunities to explore quasi-1D characteristics in SiP2 and the resulting photonic device application.

Keywords: photoluminescence, Raman, phosphide, SiP2, quasi-one-dimensional structure

References(60)

[1]

Gutzler, R.; Garg, M.; Ast, C. R.; Kuhnke, K.; Kern, K. Light-matter interaction at atomic scales. Nat. Rev. Phys. 2021, 3, 441–453.

[2]

Rivera, N.; Kaminer, I. Light-matter interactions with photonic quasiparticles. Nat. Rev. Phys. 2020, 2, 538–561.

[3]

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

[4]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[5]

Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

[6]

Chen, J. H.; Xiong, Y. F.; Xu, F.; Lu, Y. Q. Silica optical fiber integrated with two-dimensional materials: Towards opto-electro-mechanical technology. Light Sci. Appl. 2021, 10, 78.

[7]

Shree, S.; Paradisanos, I.; Marie, X.; Robert, C.; Urbaszek, B. Guide to optical spectroscopy of layered semiconductors. Nat. Rev. Phys. 2021, 3, 39–54.

[8]
Wooten, F. Optical Properties of Solids; Academic Press: New York, 2013.
[9]

Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 2005, 308, 838–841.

[10]

Spataru, C. D.; Ismail-Beigi, S.; Benedict, L. X.; Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 2004, 92, 077402.

[11]

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

[12]

Arora, A.; Noky, J.; Drüppel, M.; Jariwala, B.; Deilmann, T.; Schneider, R.; Schmidt, R.; Del Pozo-Zamudio, O.; Stiehm, T.; Bhattacharya, A. et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T'-ReSe2. Nano Lett. 2017, 17, 3202–3207.

[13]

Pi, L. J.; Hu, C. G.; Shen, W. F.; Li, L.; Luo, P.; Hu, X. Z.; Chen, P.; Li, D. Y.; Li, Z. X.; Zhou, X. et al. Highly in-plane anisotropic 2D PdSe2 for polarized photodetection with orientation selectivity. Adv. Funct. Mater. 2021, 31, 2006774.

[14]

Wu, K. D.; Blei, M.; Chen, B.; Liu, L.; Cai, H.; Brayfield, C.; Wright, D.; Zhuang, H. L.; Tongay, S. Phase transition across anisotropic NbS3 and direct gap semiconductor TiS3 at nominal titanium alloying limit. Adv. Mater. 2020, 32, 2000018.

[15]

Wang, Z. M.; Luo, P.; Han, B.; Zhang, X.; Zhao, S. Q.; Wang, S. L.; Chen, X. H.; Wei, L. M.; Yang, S. J.; Zhou, X. et al. Strong in-plane anisotropic SiP2 as a IV-V 2D semiconductor for polarized photodetection. ACS Nano 2021, 15, 20442–20452.

[16]

Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 2020, 580, 472–477.

[17]

Li, X.; Liu, H. Y.; Ke, C. M.; Tang, W. Q.; Liu, M. Y.; Huang, F. H.; Wu, Y. P.; Wu, Z. M.; Kang, J. Y. Review of anisotropic 2D materials: Controlled growth, optical anisotropy modulation, and photonic applications. Laser Photonics Rev. 2021, 15, 2100322.

[18]

Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: Preparation, characterization and applications. Nanoscale 2015, 7, 18392–18401.

[19]

Ning, C. Z.; Dou, L. T.; Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070.

[20]

Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

[21]

Kang, P. P.; Nan, H. Y.; Zhang, X. M.; Mo, H. X.; Ni, Z. H.; Gu, X. F.; Ostrikov, K.; Xiao, S. Q. Controllable synthesis of crystalline ReS2(1−x)Se2x monolayers on amorphous SiO2/Si substrates with fast photoresponse. Adv. Opt. Mater. 2020, 8, 1901415.

[22]

Cui, F. F.; Feng, Q. L.; Hong, J. H.; Wang, R. Y.; Bai, Y.; Li, X. B.; Liu, D. Y.; Zhou, Y.; Liang, X.; He, X. et al. Synthesis of large-size 1T′ ReS2xSe2(1−x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater. 2017, 29, 1705015.

[23]

Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648–2653.

[24]

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707–713.

[25]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[26]

Aslan, O. B.; Chenet, D. A.; van der Zande, A. M.; Hone, J. C.; Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 2016, 3, 96–101.

[27]

Zhang, P.; Jiang, E. L.; Ouyang, T.; Tang, C.; He, C. Y.; Li, J.; Zhang, C. X.; Zhong, J. X. Potential thermoelectric candidate monolayer silicon diphosphide (SiP2) from a first-principles calculation. Comput. Mater. Sci. 2021, 188, 110154.

[28]

Shojaei, F.; Mortazavi, B.; Zhuang, X. Y.; Azizi, M. Silicon diphosphide (SiP2) and silicon diarsenide (SiAs2): Novel stable 2D semiconductors with high carrier mobilities, promising for water splitting photocatalysts. Mater. Today Energy 2020, 16, 100377.

[29]

Azizi, A.; Wang, Y. X.; Stone, G.; Elias, A. L.; Lin, Z.; Terrones, M.; Crespi, V. H.; Alem, N. Defect coupling and sub-angstrom structural distortions in W1−xMoxS2 monolayers. Nano Lett. 2017, 17, 2802–2808.

[30]

Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 2010, 464, 571–574.

[31]

Zhao, X. X.; Ning, S. C.; Fu, W.; Pennycook, S. J.; Loh, K. P. Differentiating polymorphs in molybdenum disulfide via electron microscopy. Adv. Mater. 2018, 30, 1802397.

[32]

Zhao, X. X.; Song, P.; Wang, C. C.; Riis-Jensen, A. C.; Fu, W.; Deng, Y.; Wan, D. Y.; Kang, L. X.; Ning, S. C.; Dan, J. D. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 2020, 581, 171–177.

[33]

Nahory, R. E.; Pollack, M. A.; Johnston, W. D.; Barns, R. L. Band gap versus composition and demonstration of Vegard’s law for In1−xGaxAsyP1−y lattice matched to InP. Appl. Phys. Lett. 1978, 33, 659–661.

[34]

Jadczak, J.; Dumcenco, D. O.; Huang, Y. S.; Lin, Y. C.; Suenaga, K.; Wu, P. H.; Hsu, H. P.; Tiong, K. K. Composition dependent lattice dynamics in MoSxSe(2−x) alloys. J. Appl. Phys. 2014, 116, 193505.

[35]

Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

[36]

Jung, E.; Park, J. C.; Seo, Y. S.; Kim, J. H.; Hwang, J.; Lee, Y. H. Unusually large exciton binding energy in multilayered 2H-MoTe2. Sci. Rep. 2022, 12, 4543.

[37]

Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.

[38]

Saigal, N.; Sugunakar, V.; Ghosh, S. Exciton binding energy in bulk MoS2: A reassessment. Appl. Phys. Lett. 2016, 108, 132105.

[39]

Arora, A.; Drüppel, M.; Schmidt, R.; Deilmann, T.; Schneider, R.; Molas, M. R.; Marauhn, P.; Michaelis de Vasconcellos, S.; Potemski, M.; Rohlfing, M. et al. Interlayer excitons in a bulk van der Waals semiconductor. Nat. Commun. 2017, 8, 639.

[40]

Beal, A. R.; Knights, J. C.; Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: Trigonal prismatic coordination. J. Phys. C: Solid State Phys. 1972, 5, 3540–3551.

[41]

Mann, J.; Ma, Q.; Odenthal, P. M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; von Son Palacio, G.; Nguyen, A. et al. 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers. Adv. Mater. 2014, 26, 1399–1404.

[42]

Chen, Y. F.; Xi, J. Y.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z. G.; Huang, Y. S.; Xie, L. M. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7, 4610–4616.

[43]

Kang, J.; Tongay, S.; Li, J. B.; Wu, J. Q. Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing. J. Appl. Phys. 2013, 113, 143703.

[44]

Deng, Q. X.; Li, X. B.; Si, H. Y.; Hong, J. H.; Wang, S. Y.; Feng, Q. L.; Hu, C. X.; Wang, S. S.; Zhang, H. L.; Suenaga, K. et al. Strong band bowing effects and distinctive optoelectronic properties of 2H and 1T′ phase-tunable MoxRe1−xS2 alloys. Adv. Funct. Mater. 2020, 30, 2003264.

[45]

Zhang, M.; Wu, J. X.; Zhu, Y. M.; Dumcenco, D. O.; Hong, J. H.; Mao, N. N.; Deng, S. B.; Chen, Y. F.; Yang, Y. L.; Jin, C. H. et al. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 2014, 8, 7130–7137.

[46]
Adachi, S. Energy-band structure: Effective masses. In Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. Capper, P.; Kasap, S.; Willoughby, A., Eds.; John Wiley & Sons: Chichester, 2009; pp 229–258.
[47]

Wu, J.; Shan, W.; Walukiewicz, W. Band anticrossing in highly mismatched III V semiconductor alloys. Semicond. Sci. Technol. 2002, 17, 860–869.

[48]

Suh, J.; Tan, T. L.; Zhao, W. J.; Park, J.; Lin, D. Y.; Park, T. E.; Kim, J.; Jin, C. H.; Saigal, N.; Ghosh, S. et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 2018, 9, 199.

[49]

Carvalho, B. R.; Malard, L. M.; Alves, J. M.; Fantini, C.; Pimenta, M. A. Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 2015, 114, 136403.

[50]

Scheuschner, N.; Gillen, R.; Staiger, M.; Maultzsch, J. Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B 2015, 91, 235409.

[51]

Chen, Y. F.; Dumcenco, D. O.; Zhu, Y. M.; Zhang, X.; Mao, N. N.; Feng, Q. L.; Zhang, M.; Zhang, J.; Tan, P. H.; Huang, Y. S. et al. Composition-dependent Raman modes of Mo1−xWxS2 monolayer alloys. Nanoscale 2014, 6, 2833–2839.

[52]

Su, L. X.; Zhu, Y.; An, Y. Y.; Xie, J.; Tang, Z. K. Alloying induced disorder and localized excitonic states in ternary BexZn1−xO thin films. J. Alloys Compd. 2021, 874, 159867.

[53]

Liu, S. S.; Yuan, X.; Wang, P.; Chen, Z. G.; Tang, L.; Zhang, E. Z.; Zhang, C.; Liu, Y. W.; Wang, W. Y.; Liu, C. et al. Controllable growth of vertical heterostructure GaTexSe1−x/Si by molecular beam epitaxy. ACS Nano 2015, 9, 8592–8598.

[54]

Zhang, X.; Tan, Q. H.; Wu, J. B.; Shi, W.; Tan, P. H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435–6450.

[55]

Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

[56]

Cong, X.; Liu, X. L.; Lin, M. L.; Tan, P. H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. npj 2D Mater. Appl. 2020, 4, 13.

[57]

Bai, S. Y.; Niu, C. Y.; Yu, W. Y.; Zhu, Z. L.; Cai, X. L.; Jia, Y. Strain tunable bandgap and high carrier mobility in SiAs and SiAs2 monolayers from first-principles studies. Nanoscale Res. Lett. 2018, 13, 404.

[58]
Kittel, C. Introduction to Solid State Physics; 8th ed. John Wiley and Sons: New York, 2005.
[59]
Brillouin, L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices; Dover: New York, 1953.
[60]

Li, H. L.; Duan, X. D.; Wu, X. P.; Zhuang, X. J.; Zhou, H.; Zhang, Q. L.; Zhu, X. L.; Hu, W.; Ren, P. Y.; Guo, P. F. et al. Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756–3759.

File
12274_2022_4703_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 April 2022
Revised: 09 June 2022
Accepted: 26 June 2022
Published: 26 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 52072168, 51861145201, 21733001 and 91750101) and the National Key R&D Program of China (Nos. 2018YFA0306200 and 2021YFA1202901). Y. F. L. acknowledges financial support by the start-up fund from Chongqing University (No. 02110011044171).

Return