Journal Home > Volume 16 , Issue 1

In the field of materials science and engineering, controlling over shape and crystal orientation remains a tremendous challenge. Herein, we realize a nano self-assembly morphology adjustment of Na3V2(PO4)2F3 (NVPF) material, based on surface energy evolution by partially replacing V3+ with aliovalent Mn2+. Crystal growth direction and surface energy evolution, main factors in inducing the nano self-assembly of NVPF with different shapes and sizes, are revealed by high-resolution transmission electron microscope combined with density functional theory. Furthermore, NVPF with a two-dimensional nanosheet structure (NVPF-NS) exhibits the best rate capability with 68 mAh·g−1 of specific capacity at an ultrahigh rate of 20 C and cycle stability with 80.7% of capacity retention over 1,000 cycles at 1 C. More significantly, when matched with Se@reduced graphene oxide (rGO) anode, NVPF-NS//Se@rGO sodium-ion full cells display a remarkable long-term stability with a high capacity retention of 93.8% after 500 cycles at 0.5 C and −25 °C. Consequently, experimental and theoretical calculation results manifest that NVPF-NS demonstrates such superior performances, which can be mainly due to its inherent crystal structure and preferential orientation growth of {001} facets. This work will promise insights into developing novel architectural design strategies for high-performance cathode materials in advanced sodium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries

Show Author's information Zhen-Yi Gu1,§Yong-Li Heng1,§Jin-Zhi Guo1Jun-Ming Cao1Xiao-Tong Wang1Xin-Xin Zhao2Zhong-Hui Sun3Shuo-Hang Zheng1Hao-Jie Liang1Bo Li4( )Xing-Long Wu1,2( )
MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun 130024, China
Department of Chemistry, Northeast Normal University, Changchun 130024, China
Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical and Environmental Engineering, North China Institute of Science and Technology, Langfang 065201, China

§ Zhen-Yi Gu and Yong-Li Heng contributed equally to this work.

Abstract

In the field of materials science and engineering, controlling over shape and crystal orientation remains a tremendous challenge. Herein, we realize a nano self-assembly morphology adjustment of Na3V2(PO4)2F3 (NVPF) material, based on surface energy evolution by partially replacing V3+ with aliovalent Mn2+. Crystal growth direction and surface energy evolution, main factors in inducing the nano self-assembly of NVPF with different shapes and sizes, are revealed by high-resolution transmission electron microscope combined with density functional theory. Furthermore, NVPF with a two-dimensional nanosheet structure (NVPF-NS) exhibits the best rate capability with 68 mAh·g−1 of specific capacity at an ultrahigh rate of 20 C and cycle stability with 80.7% of capacity retention over 1,000 cycles at 1 C. More significantly, when matched with Se@reduced graphene oxide (rGO) anode, NVPF-NS//Se@rGO sodium-ion full cells display a remarkable long-term stability with a high capacity retention of 93.8% after 500 cycles at 0.5 C and −25 °C. Consequently, experimental and theoretical calculation results manifest that NVPF-NS demonstrates such superior performances, which can be mainly due to its inherent crystal structure and preferential orientation growth of {001} facets. This work will promise insights into developing novel architectural design strategies for high-performance cathode materials in advanced sodium-ion batteries.

Keywords: sodium-ion batteries, cathode, fluorophosphate, nano self-assembly

References(71)

[1]

Delmas, C. Sodium and sodium-ion batteries: 50 years of research. Adv. Energy Mater. 2018, 8, 1703137.

[2]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[3]

Chen, F. H.; Wu, Y. W.; Zhang, H. H.; Long, Z. T.; Lin, X. X.; Chen, M. Z.; Chen, Q.; Luo, Y. F.; Chou, S. L.; Zeng, R. H. The modulation of the discharge plateau of benzoquinone for sodium-ion batteries. Int. J. Miner. Metall. Mater. 2021, 28, 1675–1683.

[4]

Deng, L.; Goh, K.; Yu, F. D.; Xia, Y.; Jiang, Y. S.; Ke, W.; Han, Y.; Que, L. F.; Zhou, J.; Wang, Z. B. Self-optimizing weak solvation effects achieving faster low-temperature charge transfer kinetics for high-voltage Na3V2(PO4)2F3 cathode. Energy Stor. Mater. 2022, 44, 82–92.

[5]

Ge, P.; Hou, H. S.; Li, S. J.; Huang, L. P.; Ji, X. B. Three-dimensional hierarchical framework assembled by cobblestone-like CoSe2@C nanospheres for ultrastable sodium-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 14716–14726.

[6]

Wei, C.; Fu, X. Y.; Zhang, L. L.; Liu, J.; Sun, P. P.; Gao, L.; Chang, K. J.; Yang, X. L. Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping. Chem. Eng. J. 2021, 421, 127760.

[7]

Yuan, D.; Dou, Y. H.; Tian, Y. H.; Adekoya, D.; Xu, L.; Zhang, S. Q. Robust pseudocapacitive sodium cation intercalation induced by cobalt vacancies at atomically thin Co1−xSe2/graphene heterostructure for sodium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 18830–18837.

[8]

Gu, E. L.; Liu, S. H.; Zhang, Z. Z.; Fang, Y. Y.; Zhou, X. S.; Bao, J. C. An efficient sodium-ion battery consisting of reduced graphene oxide bonded Na3V2(PO4)3 in a composite carbon network. J. Alloys Compd. 2018, 767, 131–140.

[9]

Gu, Z. Y.; Guo, J. Z.; Zhao, X. X.; Wang, X. T.; Xie, D.; Sun, Z. H.; Zhao, C. D.; Liang, H. J.; Li, W. H.; Wu, X. L. High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries. InfoMat 2021, 3, 694–704.

[10]

Shen, L. Y.; Li, Y.; Roy, S.; Yin, X. P.; Liu, W. B.; Shi, S. S.; Wang, X.; Yin, X. M.; Zhang, J. J.; Zhao, Y. F. A robust carbon coating of Na3V2(PO4)3 cathode material for high performance sodium-ion batteries. Chin. Chem. Lett. 2021, 32, 3570–3574.

[11]

Wang, Y. H.; Li, X. T.; Wang, W. P.; Yan, H. J.; Xin, S.; Guo, Y. G. Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries. Sci. China Chem. 2020, 63, 1402–1415.

[12]

Wu, J. X.; Lin, C.; Liang, Q. H.; Zhou, G. D.; Liu, J. P.; Liang, G. M.; Wang, M.; Li, B. H.; Hu, L.; Ciucci, F. et al. Sodium-rich NASICON-structured cathodes for boosting the energy density and lifespan of sodium-free-anode sodium metal batteries. InfoMat 2022, 4, e12288.

[13]

Xu, J. Y.; Gu, E. L.; Zhang, Z. Z.; Xu, Z. H.; Xu, Y. F.; Du, Y. C.; Zhu, X. S.; Zhou, X. S. Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance. J. Colloid Interface Sci. 2020, 567, 84–91.

[14]

Bucher, N.; Hartung, S.; Franklin, J. B.; Wise, A. M.; Lim, L. Y.; Chen, H. Y.; Weker, J. N.; Toney, M. F.; Srinivasan, M. P2-NaxCoyMn1−yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries-effects of doping and morphology to enhance cycling stability. Chem. Mater. 2016, 28, 2041–2051.

[15]

Guhl, C.; Rohrer, J.; Kehne, P.; Ferber, T.; Alff, L.; Albe, K.; Jaegermann, W.; Komissinskiy, P.; Hausbrand, R. The role of covalent bonding and anionic redox for the performance of sodium cobaltate electrode materials. Energy Stor. Mater. 2021, 37, 190–198.

[16]

Liu, Q. N.; Hu, Z.; Li, W. J.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Dou, S. X. Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries? Energy Environ. Sci. 2021, 14, 158–179.

[17]

Liu, Z. G.; Jiang, K. Z.; Chu, S. Y.; Wu, J. H.; Xu, H.; Zhang, X. P.; Wang, P.; Guo, S. H.; Zhou, H. S. Integrating P2 into O′3 toward a robust Mn-Based layered cathode for sodium-ion batteries. J. Mater. Chem. A 2020, 8, 23820–23826.

[18]

Ortiz-Vitoriano, N.; Drewett, N. E.; Gonzalo, E.; Rojo, T. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 2017, 10, 1051–1074.

[19]

Wang, H.; Liao, X. Z.; Yang, Y.; Yan, X. M.; He, Y. S.; Ma, Z. F. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J. Electrochem. Soc. 2016, 163, A565–A570.

[20]

Wei, F. L.; Zhang, Q. P.; Zhang, P.; Tian, W. Q.; Dai, K. H.; Zhang, L.; Mao, J.; Shao, G. S. Review-research progress on layered transition metal oxide cathode materials for sodium ion batteries. J. Electrochem. Soc. 2021, 168, 050524.

[21]

Xiao, Y.; Abbasi, N. M.; Zhu, Y. F.; Li, S.; Tan, S. J.; Ling, W.; Peng, L.; Yang, T. Q.; Wang, L. D.; Guo, X. D. et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001334.

[22]

Zhao, C. L.; Ding, F. X.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264–269.

[23]

Cao, X. X.; Pan, A. Q.; Yin, B.; Fang, G. Z.; Wang, Y. P.; Kong, X. Z.; Zhu, T.; Zhou, J.; Cao, G. Z.; Liang, S. Q. Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 2019, 60, 312–323.

[24]

Cheng, J.; Chen, Y. J.; Sun, S. Q.; Tian, Z. Y.; Linghu, Y. Y.; Tian, Z.; Wang, C.; He, Z. F.; Guo, L. Na3V2(PO4)3/C·Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries. Ceram. Int. 2021, 47, 18065–18074.

[25]

Hou, J. R.; Hadouchi, M.; Sui, L. J.; Liu, J.; Tang, M. X.; Kan, W. H.; Avdeev, M.; Zhong, G. M.; Liao, Y. K.; Lai, Y. H. et al. Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Stor. Mater. 2021, 42, 307–316.

[26]

Jin, T.; Li, H. X.; Zhu, K. J.; Wang, P. F.; Liu, P.; Jiao, L. F. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377.

[27]

Heng, Y. L.; Gu, Z. Y.; Guo, J. Z.; Wu, X. L. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries. Acta Phys. -Chim. Sin. 2021, 37, 2005013.

[28]

Sharma, L.; Adiga, S. P.; Alshareef, H. N.; Barpanda, P. Fluorophosphates: Next generation cathode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 2001449.

[29]

Gebert, F.; Cortie, D. L.; Bouwer, J. C.; Wang, W. L.; Yan, Z. C.; Dou, S. X.; Chou, S. L. Epitaxial nickel ferrocyanide stabilizes jahn-teller distortions of manganese ferrocyanide for sodium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 18519–18526.

[30]

Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.

[31]

Peng, J.; Zhang, W.; Wang, J. S.; Li, L.; Lai, W. H.; Yang, Q. R.; Zhang, B. W.; Li, X. N.; Du, Y. M.; Liu, H. W. et al. Processing rusty metals into versatile prussian blue for sustainable energy storage. Adv. Energy Mater. 2021, 11, 2102356.

[32]

Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619.

[33]

Pi, Y. Q.; Gan, Z. W.; Yan, M. Y.; Pei, C. Y.; Yu, H.; Ge, Y. W.; An, Q. Y.; Mai, L. Q. Insight into pre-sodiation in Na3V2(PO4)2F3/C@hard carbon full cells for promoting the development of sodium-ion battery. Chem. Eng. J. 2021, 413, 127565.

[34]

Shen, C.; Long, H.; Wang, G. C.; Lu, W.; Shao, L.; Xie, K. Y. Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. J. Mater. Chem. A 2018, 6, 6007–6014.

[35]

Zhu, L.; Wang, H.; Sun, D.; Tang, Y. G.; Wang, H. Y. A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes. J. Mater. Chem. A 2020, 8, 21387–21407.

[36]

Li, Y. S.; Liang, X. H.; Chen, G. L.; Zhong, W. T.; Deng, Q.; Zheng, F. H.; Yang, C. H.; Liu, M. L.; Hu, J. H. In-situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage. Chem. Eng. J. 2020, 387, 123952.

[37]

Guo, C.; Yang, J. W.; Cui, Z. Y.; Qi, S.; Peng, Q. Q.; Sun, W. W.; Lv, L. P.; Xu, Y.; Wang, Y.; Chen, S. Q. In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. J. Energy Chem. 2022, 65, 514–523.

[38]

Li, L.; Xu, Y. L.; Chang, R.; Wang, C.; He, S. N.; Ding, X. D. Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for sodium-ion batteries. Energy Stor. Mater. 2021, 37, 325–335.

[39]

Li, W.; Yao, Z. J.; Zhang, S. Z.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. High-performance Na3V2(PO4)2F25O0.5 cathode: Hybrid reaction mechanism study via ex-situ XRD and sodium storage properties in solid-state batteries. Chem. Eng. J. 2021, 423, 130310.

[40]

Puspitasari, D. A.; Patra, J.; Hung, I. M.; Bresser, D.; Lee, T. C.; Chang, J. K. Optimizing the Mg doping concentration of Na3V2−xMgx(PO4)2F3/C for enhanced sodiation/desodiation properties. ACS Sustainable Chem. Eng. 2021, 9, 6962–6971.

[41]

Yi, G. D.; Fan, C. L.; Hu, Z.; Zhang, W. H.; Han, S. C.; Liu, J. S. Construction of high performance N-doped Na3V2(PO4)2F3/C cathode assisting by plasma enhanced chemical vapor deposition for sodium-ion batteries. Electrochim. Acta 2021, 383, 138370.

[42]

Mukherjee, A.; Sharabani, T.; Sharma, R.; Okashy, S.; Noked, M. Effect of crystal structure and morphology on Na3V2(PO4)2F3 performances for Na-ion batteries. Batteries Supercaps 2020, 3, 510–518.

[43]

Zhao, L. N.; Rong, X. H.; Niu, Y. S.; Xu, R.; Zhang, T.; Li, T.; Yu, Y.; Hou, Y. L. Ostwald ripening tailoring hierarchically porous Na3V2(PO4)2O2F hollow nanospheres for superior high-rate and ultrastable sodium ion storage. Small 2020, 16, 2004925.

[44]

Zheng, L. M.; Zhang, D. T.; Wang, X. Y.; Guo, G. S. Continuous-flow rapid and controllable microfluidic synthesis of sodium vanadium fluorophosphate as a cathode material. Appl. Mater. Today 2021, 23, 101032.

[45]

Zhu, W. K.; Liang, K.; Ren, Y. R. Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone. Ceram. Int. 2021, 47, 17192–17201.

[46]

Li, M. G.; Xia, Z. G.; Huang, Y. R.; Tao, L.; Chao, Y. G.; Yin, K.; Yang, W. X.; Yang, W. W.; Yu, W. S.; Guo, S. J. Rh-doped PdCu ordered intermetallics for enhanced oxygen reduction electrocatalysis with superior methanol tolerance. Acta Phys. -Chim. Sin. 2020, 36, 1912049.

[47]

Li, Z. Y.; Peng, Z. L.; Sun, R.; Qin, Z. X.; Liu, X. L.; Wang, C. H.; Fan, H. S.; Lu, S. J. Super Na+ half/full batteries and ultrafast Na+ diffusion kinetics of cobalt-nickel selenide from assembling Co05Ni0.5Se2@NC nanosheets into cross-stacked architecture. Chin. J. Chem. 2021, 39, 2599–2606.

[48]

Li, Z. Y.; Sun, R.; Qin, Z. X.; Liu, X. L.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S. Coupling of ReS2 nanosheet arrays with hollow NiCoS4 nanocubes enables ultrafast Na+ diffusion kinetics and super Na+ storage of a NiCoS4@ReS2 heterostructure. Mater. Chem. Front. 2021, 5, 7540–7547.

[49]

Liao, J. Y.; Chen, C. L.; Hu, Q.; Du, Y. C.; He, Y. N.; Xu, Y. F.; Zhang, Z. Z.; Zhou, X. S. A low-strain phosphate cathode for high-rate and ultralong cycle-life potassium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 25575–25582.

[50]

Qi, X. R.; Liu, Y.; Ma, L. L.; Hou, B. X.; Zhang, H. W.; Li, X. H.; Wang, Y. S.; Hui, Y. Q.; Wang, R. X.; Bai, C. Y. et al. Delicate synthesis of quasi-inverse opal structural Na3V2(PO4)3/N-C and Na4MnV(PO4)3/N-C as cathode for high-rate sodium-ion batteries. Rare Met. 2022, 41, 1637–1646.

[51]

Zhu, H. Y.; Li, Z. Y.; Xu, F.; Qin, Z. X.; Sun, R.; Wang, C. H.; Lu, S. J.; Zhang, Y. F.; Fan, H. S. Ni3Se4@CoSe2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery. J. Colloid Interface Sci. 2022, 611, 718–725.

[52]

Criado, A.; Lavela, P.; Ortiz, G.; Tirado, J. L.; Pérez-Vicente, C.; Bahrou, N.; Edfouf, Z. Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries. Electrochim. Acta 2020, 332, 135502.

[53]

Qi, Y. R.; Mu, L. Q.; Zhao, J. M.; Hu, Y. S.; Liu, H. Z.; Dai, S. pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability. J. Mater. Chem. A 2016, 4, 7178–7184.

[54]

Ji, X.; Li, H. J.; Wu, Z. G.; Cheng, S.; Hu, H. R.; Yan, D.; Zhuo, R. F.; Wang, J.; Yan, P. X. Growth of AlN hexagonal oriented complex nanostructures induced by nucleus arrangement. CrystEngComm 2011, 13, 5198–5203.

[55]

Tanta, R.; Kanne, T.; Amaduzzi, F.; Liao, Z. Y.; Madsen, M. H.; Alarcón-Lladó, E.; Krogstrup, P.; Johnson, E.; Morral, A. F.; Vosch, T. et al. Morphology and composition of oxidized InAs nanowires studied by combined Raman spectroscopy and transmission electron microscopy. Nanotechnology 2016, 27, 305704.

[56]

Xia, W. W.; Xu, F.; Zhu, C. Y.; Xin, H. L.; Xu, Q. Y.; Sun, P. P.; Sun, L. T. Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy. Nano Energy 2016, 27, 447–456.

[57]

Song, W. X.; Cao, X. Y.; Wu, Z. P.; Chen, J.; Zhu, Y. R.; Hou, H. S.; Lan, Q.; Ji, X. B. Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation. Langmuir 2014, 30, 12438–12446.

[58]

Wang, M. X.; Wang, K.; Huang, X. B.; Zhou, T.; Xie, H. S.; Ren, Y. R. Improved sodium storage properties of Zr-doped Na3V2(PO4)2F3/C as cathode material for sodium ion batteries. Ceram. Int. 2020, 46, 28490–28498.

[59]

Li, Q.; Rellán-Piñeiro, M.; Almora-Barrios, N.; Garcia-Ratés, M.; Remediakis, I. N.; López, N. Shape control in concave metal nanoparticles by etching. Nanoscale 2017, 9, 13089–13094.

[60]

Yi, H. M.; Lin, L.; Ling, M. X.; Lv, Z. Q.; Li, R.; Fu, Q.; Zhang, H. M.; Zheng, Q.; Li, X. F. Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal-ball-milling method. ACS Energy Lett. 2019, 4, 1565–1571.

[61]

Broux, T.; Bamine, T.; Fauth, F.; Simonelli, L.; Olszewski, W.; Marini, C.; Ménétrier, M.; Carlier, D.; Masquelier, C.; Croguennec, L. Strong impact of the oxygen content in Na3V2(PO4)2F3−yOy (0 ≤ y ≤ 0.5) on its structural and electrochemical properties. Chem. Mater. 2016, 28, 7683–7692.

[62]

Broux, T.; Fleutot, B.; David, R.; Brüll, A.; Veber, P.; Fauth, F.; Courty, M.; Croguennec, L.; Masquelier, C. Temperature dependence of structural and transport properties for Na3V2(PO4)2F3 and Na3V2(PO4)2F2.5O0.5. Chem. Mater. 2018, 30, 358–365.

[63]

Iarchuk, A. R.; Sheptyakov, D. V.; Abakumov, A. M. Hydrothermal microwave-assisted synthesis of Na3+xV2−yMny(PO4)2F3 solid solutions as potential positive electrodes for Na-ion batteries. ACS Appl. Energy Mater. 2021, 4, 5007–5014.

[64]

Zheng, Q.; Ni, X.; Lin, L.; Yi, H. M.; Han, X. W.; Li, X. F.; Bao, X. H.; Zhang, H. M. Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na3V2(PO4)3 for sodium ion batteries. J. Mater. Chem. A 2018, 6, 4209–4218.

[65]

Zhang, Z. B.; Chen, Z. H.; Mai, Z. X.; Peng, K. Y.; Deng, Q. L.; Bayaguud, A.; Zhao, P. F.; Fu, Y. P.; Yu, Y.; Zhu, C. B. Toward high power-high energy sodium cathodes: A case study of bicontinuous ordered network of 3D porous Na3(VO)2(PO4)2F/rGO with pseudocapacitance effect. Small 2019, 15, 1900356.

[66]

Liu, H. D.; Wang, J.; Zhang, X. F.; Zhou, D.; Qi, X.; Qiu, B.; Fang, J. H.; Kloepsch, R.; Schumacher, G.; Liu, Z. P. et al. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: The critical effects of surface orientations and particle size. ACS Appl. Mater. Interfaces 2016, 8, 4661–4675.

[67]

Wang, Y. Y.; Hou, B. H.; Guo, J. Z.; Ning, Q. L.; Pang, W. L.; Wang, J. W.; Lü, C. L.; Wu, X. L. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater. 2018, 8, 1703252.

[68]

Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; Zhao, X. X.; Li, W. H.; Yang, X.; Liang, H. J.; Zhao, C. D.; Wu, X. L. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. 2020, 65, 702–710.

[69]

Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; Zhao, X. X.; Wang, X. T.; Liang, H. J.; Zhao, B.; Li, W. H.; Pan, X. M.; Wu, X. L. Aliovalent-ion-induced lattice regulation based on charge balance theory: Advanced fluorophosphate cathode for sodium-ion full batteries. Small 2021, 17, 2102010.

[70]

Hwang, J.; Takeuchi, K.; Matsumoto, K.; Hagiwara, R. NASICON vs. Na metal: A new counter electrode to evaluate electrodes for Na secondary batteries. J. Mater. Chem. A 2019, 7, 27057–27065.

[71]

Li, C. C.; Zhang, X. S.; Zhu, Y. H.; Zhang, Y.; Xin, S.; Wan, L. J.; Guo, Y. G. Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries. Energy Mater. 2021, 1, 100017.

File
12274_2022_4687_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 April 2022
Revised: 11 June 2022
Accepted: 21 June 2022
Published: 31 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 91963118, 52173246, and 52102213), the Science Technology Program of Jilin Province (No. 20200201066JC), and the 111 Project (No. B13013).

Return