Journal Home > Volume 16 , Issue 1

Single atom catalysts (SACs) were reported to demonstrate exciting catalytic features for a number of reactions, including hydrogen evolution reaction (HER). However, the true role of these single atom sites in catalysts remains elusive, particularly for those prepared via pyrolysis, where the formation of active nanoparticle counterparts is often unavoidable. Here we report a Ru based catalyst (Ru embedded in N doped carbon spheres (Ru/NPCS)) comprising of both Ru nanoclusters and Ru single sites, who demonstrates activity exceeding Pt catalyst and mass activity among the best of the Ru based catalysts under acidic conditions. The integration of proton exchange membrane water electrolysis with Ru/NPCS as a cathode exhibited an excellent hydrogen generation activity and extraordinary stability (during 120 h of electrolysis) with a 1/48 Ru loading (16.5 µgRu·cm−2) of a commercial 20% Pt/C catalyst. Through precisely tailoring the dispersion status of the catalysts, we reveal that while ruthenium nanoclusters actively catalyze HER via Volmer–Tafel mechanism, the Ru SACs barely catalyze HER, with H* adsorption difficult to occur. Moreover, no synergy between Ru SACs and Ru cluster is revealed, meaning the Ru SACs act as a spectator rather than active species during H2 evolution.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Identification of active sites and synergistic effect in multicomponent carbon-based Ru catalysts during electrocatalytic hydrogen evolution

Show Author's information Rongpeng Ma1,2Xian Wang1Xiaolong Yang1Yang Li1Changpeng Liu1,2( )Junjie Ge1,2,3( )Wei Xing1,2( )
State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China

Abstract

Single atom catalysts (SACs) were reported to demonstrate exciting catalytic features for a number of reactions, including hydrogen evolution reaction (HER). However, the true role of these single atom sites in catalysts remains elusive, particularly for those prepared via pyrolysis, where the formation of active nanoparticle counterparts is often unavoidable. Here we report a Ru based catalyst (Ru embedded in N doped carbon spheres (Ru/NPCS)) comprising of both Ru nanoclusters and Ru single sites, who demonstrates activity exceeding Pt catalyst and mass activity among the best of the Ru based catalysts under acidic conditions. The integration of proton exchange membrane water electrolysis with Ru/NPCS as a cathode exhibited an excellent hydrogen generation activity and extraordinary stability (during 120 h of electrolysis) with a 1/48 Ru loading (16.5 µgRu·cm−2) of a commercial 20% Pt/C catalyst. Through precisely tailoring the dispersion status of the catalysts, we reveal that while ruthenium nanoclusters actively catalyze HER via Volmer–Tafel mechanism, the Ru SACs barely catalyze HER, with H* adsorption difficult to occur. Moreover, no synergy between Ru SACs and Ru cluster is revealed, meaning the Ru SACs act as a spectator rather than active species during H2 evolution.

Keywords: nanoclusters, hydrogen evolution reaction, single atom catalysts, no synergy

References(38)

[1]

Li, G. F.; Yu, H. M.; Yang, D. L.; Chi, J.; Wang, X. Y.; Sun, S. C.; Shao, Z. G.; Yi, B. L. Iridium-tin oxide solid-solution nanocatalysts with enhanced activity and stability for oxygen evolution. J. Power Sources 2016, 325, 15–24.

[2]

Alia, S. M.; Shulda, S.; Ngo, C.; Pylypenko, S.; Pivovar, B. S. Iridium-based nanowires as highly active, oxygen evolution reaction electrocatalysts. ACS Catal. 2018, 8, 2111–2120.

[3]

King, L. A.; Hubert, M. A.; Capuano, C.; Manco, J.; Danilovic, N.; Valle, E.; Hellstern, T. R.; Ayers, K.; Jaramillo, T. F. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 2019, 14, 1071–1074.

[4]

Kim, Y. J.; Lim, A.; Kim, J. M.; Lim, D.; Chae, K. H.; Cho, E. N.; Han, H. J.; Jeon, K. U.; Kim, M.; Lee, G. H. et al. Highly efficient oxygen evolution reaction via facile bubble transport realized by three-dimensionally stack-printed catalysts. Nat. Commun. 2020, 11, 4921.

[5]

Liu, T. T.; Wang, S.; Zhang, Q. J.; Chen, L.; Hu, W. H.; Li, C. M. Ultrasmall Ru2P nanoparticles on graphene: A highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem. Commun. 2018, 54, 3343–3346.

[6]

Yu, J.; Guo, Y. N.; She, S. X.; Miao, S. S.; Ni, M.; Zhou, W.; Liu, M. L.; Shao, Z. P. Bigger is surprisingly better: Agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv. Mater. 2018, 30, 1800047.

[7]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[8]

Li, W. D.; Zhao, Y. X.; Liu, Y.; Sun, M. Z.; Waterhouse, G. I. N.; Huang, B. l.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Exploiting Ru-induced lattice strain in CoRu nanoalloys for robust bifunctional hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 3290–3298.

[9]

Wu, Y. L.; Li, X. F.; Wei, Y. S.; Fu, Z. M.; Wei, W. B.; Wu, X. T.; Zhu, Q. L.; Xu, Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv. Mater. 2021, 33, 2006965.

[10]

Tu, K. J.; Tranca, D.; Rodríguez-Hernández, F.; Jiang, K. Y.; Huang, S. H.; Zheng, Q.; Chen, M. X.; Lu, C. B.; Su, Y. Z.; Chen, Z. Y. et al. A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Adv. Mater. 2020, 32, 2005433.

[11]

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

[12]

Chen, L. G.; Li, Y. P.; Liang, X. Ar/H2/O2-controlled growth thermodynamics and kinetics to create zero-, one-, and two-dimensional ruthenium nanocrystals towards acidic overall water splitting. Adv. Funct. Mater. 2021, 31, 2007344.

[13]

Zhu, J. W.; Guo, Y.; Liu, F.; Xu, H. W.; Gong, L.; Shi, W. J.; Chen, D.; Wang, P. Y.; Yang, Y.; Zhang, C. T. et al. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media. Angew. Chem., Int. Ed. 2021, 60, 12328–12334.

[14]

Lu, Q. P.; Wang, A. L.; Cheng, H. F.; Gong, Y.; Yun, Q. B.; Yang, N. L.; Li, B.; Chen, B.; Zhang, Q. H.; Zong, Y. et al. Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 2018, 14, 1801090.

[15]

Li, H. J. W.; Liu, K.; Fu, J. W.; Chen, K. J.; Yang, K. X.; Lin, Y. Y.; Yang, B. P.; Wang, Q. Y.; Pan, H.; Cai, Z. J. et al. Paired Ru-O-Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy 2021, 82, 105767.

[16]

Liu, Z.; Zeng, L. L.; Yu, J. Y.; Yang, L. J.; Zhang, J.; Zhang, X. L.; Han, F.; Zhao, L. L.; Li, X.; Liu, H. et al. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction. Nano Energy 2021, 85, 105940.

[17]

Wang, J.; Wei, Z. Z.; Mao, S. J.; Li, H. R.; Wang, Y. Highly uniform Ru nanoparticles over N-doped carbon: pH and temperature-universal hydrogen release from water reduction. Energy Environ. Sci. 2018, 11, 800–806.

[18]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[19]

Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

[20]

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency. Nat. Commun. 2020, 11, 1278.

[21]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powd. Mater. 2022, 1, 100013.

[22]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[23]

Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

[24]

Liu, H. G.; Hu, Z.; Liu, Q. L.; Sun, P.; Wang, Y. F.; Chou, S. L.; Hu, Z. Z.; Zhang, Z. Q. Single-atom Ru anchored in nitrogen-doped MXene (Ti3C2Tx) as an efficient catalyst for the hydrogen evolution reaction at all pH values. J. Mater. Chem. A 2020, 8, 24710–24717.

[25]

Yang, J.; Chen, B. X.; Liu, X. K.; Liu, W.; Li, Z. J.; Dong, J. C.; Chen, W. X.; Yan, W. S.; Yao, T.; Duan, X. Z. et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew. Chem., Int. Ed. 2018, 57, 9495–9500.

[26]

Ramalingam, V.; Varadhan, P.; Fu, H. C.; Kim, H.; Zhang, D. L.; Chen, S. M.; Song, L.; Ma, D.; Wang, Y.; Alshareef, H. N. et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv. Mater. 2019, 31, 1903841.

[27]

Zhang, L. J.; Jang, H.; Wang, Y.; Li, Z. J.; Zhang, W.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. N.; Cho, J. Exploring the dominant role of atomic- and nano-ruthenium as active sites for hydrogen evolution reaction in both acidic and alkaline media. Adv. Sci. 2021, 8, 2004516.

[28]

Zhang, H. B.; Zhou, W.; Lu, X. F.; Chen, T.; Lou, X. W. Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy Mater. 2020, 10, 2000882.

[29]
Zhu, P. ; Xiong, X. ; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4265-y.
[30]

Hu, C.; Song, E. H.; Wang, M. Y.; Chen, W.; Huang, F. Q.; Feng, Z. X.; Liu, J. J.; Wang, J. C. Partial-single-atom, partial-nanoparticle composites enhance water dissociation for hydrogen evolution. Adv. Sci. 2021, 8, 2001881.

[31]

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

[32]

Tiwari, J. N.; Harzandi, A. M.; Ha, M. R.; Sultan, S.; Myung, C. W.; Park, H. J.; Kim, D. Y.; Thangavel, P.; Singh, A. N.; Sharma, P. et al. High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-doped graphitic sheet. Adv. Energy Mater. 2019, 9, 1900931.

[33]

Zhang, J.; Liu, P.; Wang, G.; Zhang, P. P.; Zhuang, X. D.; Chen, M. W.; Weidinger, I. M.; Feng, X. L. Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution. J. Mater. Chem. A 2017, 5, 25314–25318.

[34]

Modak, A.; Nandi, M.; Mondal, J.; Bhaumik, A. Porphyrin based porous organic polymers: Novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem. Commun. 2012, 48, 248–250.

[35]

Ma, R. P.; Wang, Y.; Li, G. Q.; Yang, L.; Liu, S. W.; Jin, Z.; Zhao, X.; Ge, J. J.; Xing, W. Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Res. 2021, 14, 4321–4327.

[36]

Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

[37]

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

[38]

Cao, L. L.; Luo, Q. Q.; Chen, J. J.; Wang, L.; Lin, Y.; Wang, H. J.; Liu, X. K.; Shen, X. Y.; Zhang, W.; Liu, W. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 2019, 10, 4849.

File
12274_2022_4643_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 May 2022
Revised: 08 June 2022
Accepted: 08 June 2022
Published: 05 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge funding from the National Key Research and Development Program of China (No. 2018YFB1502400), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21090400), and the Jilin Province Science and Technology Development Program (Nos. 20190201300JC and 20180101030JC).

Return