Journal Home > Volume 15 , Issue 10

With the packing density growing continuously in integrated electronic devices, sufficient heat dissipation becomes a serious challenge. Recently, dielectric materials with high thermal conductivity have brought insight into effective dissipation of waste heat in electronic devices to prevent them from overheating and guarantee the performance stability. Layered CrOCl, an anti-ferromagnetic insulator with low-symmetry crystal structure and atomic level flatness, might be a promising solution to the thermal challenge. Herein, we have systematically studied the thermal transport of suspended few-layer CrOCl flakes by micro-Raman thermometry. The CrOCl flakes exhibit high thermal conductivities along zigzag direction, from ~ 392 ± 33 to ~ 1,017 ± 46 W·m−1·K−1 with flake thickness from 2 to 50 nm. Besides, pronounced thickness-dependent thermal conductivity ratio ( κZZ/ κAR from ~ 2.8 ± 0.24 to ~ 4.3 ± 0.25) has been observed in the CrOCl flakes, attributed to the discrepancy of phonon dispersion and phonon surface scattering. As a demonstration to the heat sink application of layered CrOCl, we then investigate the energy dissipation in graphene devices on CrOCl, SiO2 and hexagonal boron nitride (h-BN) substrates, respectively. The graphene device temperature rise on CrOCl is only 15.4% of that on SiO2 and 30% on h-BN upon the same electric power density, indicating the efficient heat dissipation of graphene device on CrOCl. Our study provides new insights into two-dimentional (2D) dielectric material with high thermal conductivity and strong anisotropy for the application of thermal management in electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly anisotropic thermal conductivity of few-layer CrOCl for efficient heat dissipation in graphene device

Show Author's information Xiaoming Zheng1,5,§Yuehua Wei2,§Zhenhua Wei3Wei Luo3Xiao Guo4Xiangzhe Zhang3Jinxin Liu1Yangbo Chen1Gang Peng3Weiwei Cai1,5Shiqiao Qin2Han Huang4( )Chuyun Deng3( )Xueao Zhang1,5( )
College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
College of Arts and Sciences, National University of Defense Technology, Changsha 410073, China
Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Jiujiang Research Institute of Xiamen University, Jiujiang 332105, China

§ Xiaoming Zheng and Yuehua Wei contributed equally to this work.

Abstract

With the packing density growing continuously in integrated electronic devices, sufficient heat dissipation becomes a serious challenge. Recently, dielectric materials with high thermal conductivity have brought insight into effective dissipation of waste heat in electronic devices to prevent them from overheating and guarantee the performance stability. Layered CrOCl, an anti-ferromagnetic insulator with low-symmetry crystal structure and atomic level flatness, might be a promising solution to the thermal challenge. Herein, we have systematically studied the thermal transport of suspended few-layer CrOCl flakes by micro-Raman thermometry. The CrOCl flakes exhibit high thermal conductivities along zigzag direction, from ~ 392 ± 33 to ~ 1,017 ± 46 W·m−1·K−1 with flake thickness from 2 to 50 nm. Besides, pronounced thickness-dependent thermal conductivity ratio ( κZZ/ κAR from ~ 2.8 ± 0.24 to ~ 4.3 ± 0.25) has been observed in the CrOCl flakes, attributed to the discrepancy of phonon dispersion and phonon surface scattering. As a demonstration to the heat sink application of layered CrOCl, we then investigate the energy dissipation in graphene devices on CrOCl, SiO2 and hexagonal boron nitride (h-BN) substrates, respectively. The graphene device temperature rise on CrOCl is only 15.4% of that on SiO2 and 30% on h-BN upon the same electric power density, indicating the efficient heat dissipation of graphene device on CrOCl. Our study provides new insights into two-dimentional (2D) dielectric material with high thermal conductivity and strong anisotropy for the application of thermal management in electronic devices.

Keywords: graphene devices, CrOCl, High thermal conductivity, strong anisotropy, efficient heat dissipation, heat sink

References(45)

1

Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.

2

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

3

Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147–169.

4

Moore, A. L.; Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 2014, 17, 163–174.

5

Wei, Y. H.; Deng, C. Y.; Zheng, X. M.; Chen, Y. B.; Zhang, X. Z.; Luo, W.; Zhang, Y.; Peng, G.; Liu, J. X.; Huang, H. et al. Anisotropic in-plane thermal conductivity for multi-layer WTe2. Nano Res. 2022, 15, 401–407.

6

Wei, Y. H.; Zhang, R. Y.; Zhang, Y.; Zheng, X. M.; Cai, W. W.; Ge, Q.; Novoselov, K. S.; Xu, Z. J.; Jiang, T.; Deng, C. Y. et al. Thickness-independent energy dissipation in graphene electronics. ACS Appl. Mater. Interfaces 2020, 12, 17706–17712.

7

Zhang, Z. W.; Hu, S. Q.; Chen, J.; Li, B. W. Hexagonal boron nitride: A promising substrate for graphene with high heat dissipation. Nanotechnology 2017, 28, 225704.

8

Ahmed, F.; Kim, Y. D.; Choi, M. S.; Liu, X. C.; Qu, D. S.; Yang, Z.; Hu, J. Y.; Herman, I. P.; Hone, J.; Yoo, W. J. High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering. Adv. Funct. Mater. 2017, 27, 1604025.

9

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

10

Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D. et al. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216.

11

Fu, Y. F.; Hansson, J.; Liu, Y.; Chen, S. J.; Zehri, A.; Samani, M. K.; Wang, N.; Ni, Y. X.; Zhang, Y.; Zhang, Z. B. et al. Graphene related materials for thermal management. 2D Mater. 2019, 7, 012001.

12

Yang, G.; Yi, H. K.; Yao, Y. G.; Li, C. W.; Li, Z. Thermally conductive graphene films for heat dissipation. ACS Appl. Nano Mater. 2020, 3, 2149–2155.

13
Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H.; Kang, F. Two-dimensional materials for thermal management applications [J]. Joule, 2018, 2, 442–463.
14

Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 2013, 13, 550–554.

15

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

16

Cai, W. W.; Moore, A. L.; Zhu, Y. W.; Li, X. S.; Chen, S. S.; Shi, L.; Ruoff, R. S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651.

17

Sahoo, S.; Gaur, A. P. S.; Ahmadi, M.; Guinel, M. J. F.; Katiyar, R. S. Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013, 117, 9042–9047.

18

Ong, Z Y.; Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C 2014, 118, 25272–25277.

19

Luo, Z.; Maassen, J.; Deng, Y. X.; Du, Y. C.; Garrelts, R. P.; Lundstrom, M. S.; Ye, P. D.; Xu, X. F. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.

20

Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

21

Chen, Y.; Peng, B.; Cong, C. X.; Shang, J. Z.; Wu, L. S.; Yang, W. H.; Zhou, J. D.; Yu, P.; Zhang, H. B.; Wang, Y. L. et al. In-plane anisotropic thermal conductivity of few-layered transition metal dichalcogenide Td-WTe2. Adv. Mater. 2019, 31, 1804979.

22

Kim, S. E.; Mujid, F.; Rai, A.; Eriksson, F.; Suh, J.; Poddar, P.; Ray, A.; Park, C.; Fransson, E.; Zhong, Y. et al. Extremely anisotropic van der Waals thermal conductors. Nature 2021, 597, 660–665.

23

Chung, D. D. L.; Takizawa, Y. Performance of isotropic and anisotropic heat spreaders. J. Electron. Mater. 2012, 41, 2580–2587.

24

Zhang, T. L.; Wang, Y. M.; Li, H. X.; Zhong, F.; Shi, J.; Wu, M. H.; Sun, Z. Y.; Shen, W. F.; Wei, B.; Hu, W. D. et al. Magnetism and optical anisotropy in van der Waals antiferromagnetic insulator CrOCl. ACS Nano 2019, 13, 11353–11362.

25

Angelkort, J.; Wölfel, A.; Schönleber, A.; van Smaalen, S.; Kremer, R. K. Observation of strong magnetoelastic coupling in a first-order phase transition of CrOCl. Phys. Rev. B 2009, 80, 144416.

26

Miao, N. H.; Xu, B.; Zhu, L. G.; Zhou, J.; Sun, Z. M. 2D intrinsic ferromagnets from van der Waals antiferromagnets. J. Am. Chem. Soc. 2018, 140, 2417–2420.

27
Zhang, M. J.; Hu, Q. F.; Hua, C. Q.; Cheng, M.; Liu, Z.; Song, S.J.; Wang, F. G.; He, P. M.; Cao, G. H.; Xu, Z. A.; Lu, Y. H.; Yang, J. B.; Zheng, Y.Metamagnetic transitions in few-layer CrOCl controlled by magnetic anisotropy flipping. 2021, arXiv:2108.02825. arXiv.org e-Print archive. https://doi.org/10.48550/arXiv.2108.02825 (accessed Aug 5, 2021)
28

Zhang, T. Y.; Wang, H. W.; Xia, X. X.; Yan, N.; Sha, X. Z.; Huang, J. Q.; Watanabe, K.; Taniguchi, T.; Zhu, M. J.; Wang, L. et al. A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler. Light:Sci. Appl. 2022, 11, 48.

29
Yang, K. N.; Gao, X.; Wang, Y. N.; Zhang, T. Y.; Gu, P. F.; Luo,Z. P.; Zheng, R. J.; Cao, S. M.; Wang, H. W.; Sun, X. D.; Watanabe, K.; Taniguchi, T.; Li, X. Y.; Zhang, J.; Dai, X.; Chen, J. H.; Ye, Y.; Han, Z. V. Realization of graphene logics in an exciton-enhanced insulatingphase. 2021, arXiv: 2110.02921. arXiv.org e-Printarchive. https://doi.org/10.48550/arXiv.2110.02921 (accessed Oct 6, 2021)
30
Wang, Y. N.; Gao, X.; Yang, K. N.; Gu, P. F.; Dong, B. J.; Jiang,Y. H.; Watanabe, K.; Taniguchi, T.; Kang, J.; Lou, W. K.; Mao, J. H.; Y, Y.; Han, Z, V.; Chang, K.; Zhang, J.; Zhang, Z. D. Flavoured quantum Hall phase in graphene/CrOCl heterostructures. 2021, arXiv: 2110.02899. arXiv.org e-Printarchive. https://doi.org/10.48550/arXiv.2110.02899 (accessed Oct 6, 2021)
31

Lee, S.; Yang, F.; Suh, J.; Yang, S. J.; Lee, Y.; Li, G.; Choe, H. S.; Suslu, A.; Chen, Y. B.; Ko, C. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 2015, 6, 8573.

32

Jang, H.; Wood, J. D.; Ryder, C. R.; Hersam, M. C.; Cahill, D. G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater. 2015, 27, 8017–8022.

33

Yan, R. S.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X. F.; Kis, A.; Luo, T. F.; Walker, A. R. H.; Xing, H. G. Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 2014, 8, 986–993.

34

Chen, Y. B.; Deng, C. Y.; Wei, Y. H.; Liu, J. X.; Su, Y.; Xie, S. Y.; Cai, W. W.; Peng, G.; Huang, H.; Dai, M. Y. et al. Thickness dependent anisotropy of in-plane Raman modes under different temperatures in supported few-layer WTe2. Appl. Phys. Lett. 2021, 119, 063104.

35

Cai, Q. R.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S. Y.; Watanabe, K.; Taniguchi, T.; Chen, Y.; Santos, E. J. G.; Li, L. H. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129.

36

Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.

37

Xu, W.; Zhu, L. Y.; Cai, Y. Q.; Zhang, G.; Li, B. W. Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger–Weber potential and molecular dynamics study. J. Appl. Phys. 2015, 117, 214308.

38

Zhao, Y. S.; Zhang, G.; Nai, M. H.; Ding, G. Q.; Li, D. F.; Liu, Y.; Hippalgaonkar, K.; Lim, C. T.; Chi, D. Z.; Li, B. W. et al. Probing the physical origin of anisotropic thermal transport in black phosphorus nanoribbons. Adv. Mater. 2018, 30, 1804928.

39

Zhang, X.; Sun, D. Z.; Li, Y. L.; Lee, G. H.; Cui, X.; Chenet, D.; You, Y. M.; Heinz, T. F.; Hone, J. C. Measurement of lateral and interfacial thermal conductivity of single- and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Appl. Mater. Interfaces 2015, 7, 25923–25929.

40

Pettes, M. T.; Maassen, J.; Jo, I.; Lundstrom, M. S.; Shi, L. Effects of surface band bending and scattering on thermoelectric transport in suspended bismuth telluride nanoplates. Nano Lett. 2013, 13, 5316–5322.

41

Jeong, C.; Datta, S.; Lundstrom, M. Thermal conductivity of bulk and thin-film silicon: A Landauer approach. J. Appl. Phys. 2012, 111, 093708.

42

Bonini, N.; Garg, J.; Marzari, N. Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene. Nano Lett. 2012, 12, 2673–2678.

43

Mleczko, M. J.; Xu, R. L.; Okabe, K.; Kuo, H. H.; Fisher, I. R.; Wong, H. S. P.; Nishi, Y.; Pop, E. High current density and low thermal conductivity of atomically thin semimetallic WTe2. ACS Nano 2016, 10, 7507–7514.

44

Yalon, E.; McClellan, C. J.; Smithe, K. K. H.; Rojo, M. M.; Xu, R. L.; Suryavanshi, S. V.; Gabourie, A. J.; Neumann, C. M.; Xiong, F.; Farimani, A. B. et al. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 2017, 17, 3429–3433.

45

Yang, X.; Ma, J. J.; Ling, J.; Li, N.; Wang, D.; Yue, F.; Xu, S. M. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl. Surf. Sci. 2018, 435, 609–616.

File
12274_2022_4611_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 February 2022
Revised: 18 May 2022
Accepted: 01 June 2022
Published: 23 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.11874423).

Return