Journal Home > Volume 15 , Issue 12

Alkyne semi-hydrogenation is extremely significant for the production of polymer-grade ethylene and lots of fine chemicals in modern industry. Many efforts had been devoted to regulate the electronic and geometric structure of active ensembles for suppressing side reactions, including over-hydrogenation and oligomerization. Several strategies, such as alloying, surface decoration, atomization of metal centers, and others, were developed to promote the selective production of target alkenes in alkyne hydrogenation. In this review, the basic principles within reaction mechanisms and catalyst optimization would be discussed in detail. And an updated perspective to the fabrication of next-generation catalysts for alkyne semi-hydrogenation is also provided.


menu
Abstract
Full text
Outline
About this article

Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts

Show Author's information Zhe Wang1,2Qian Luo1Shanjun Mao1Chunpeng Wang1Jinqi Xiong1Zhirong Chen2Yong Wang1( )
Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310028, China

Abstract

Alkyne semi-hydrogenation is extremely significant for the production of polymer-grade ethylene and lots of fine chemicals in modern industry. Many efforts had been devoted to regulate the electronic and geometric structure of active ensembles for suppressing side reactions, including over-hydrogenation and oligomerization. Several strategies, such as alloying, surface decoration, atomization of metal centers, and others, were developed to promote the selective production of target alkenes in alkyne hydrogenation. In this review, the basic principles within reaction mechanisms and catalyst optimization would be discussed in detail. And an updated perspective to the fabrication of next-generation catalysts for alkyne semi-hydrogenation is also provided.

Keywords: heterogeneous catalysis, alkyne semi-hydrogenation, metal-based catalysts, catalytic mechanism.

References(127)

[1]

Borodziński, A.; Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 2006, 48, 91–144.

[2]

Bridier, B.; López, N.; Pérez-Ramírez, J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans. 2010, 39, 8412–8419.

[3]

Delgado, J. A.; Benkirane, O.; Claver, C.; Curulla-Ferré, D.; Godard, C. Advances in the preparation of highly selective nanocatalysts for the semi-hydrogenation of alkynes using colloidal approaches. Dalton Trans. 2017, 46, 12381–12403.

[4]

Wang, Z.; Mao, S. J.; Li, H. R.; Wang, Y. How to synthesize vitamin E. Acta Phys. Chim. Sin. 2018, 34, 598–617.

[5]

Liguori, F.; Barbaro, P. Green semi-hydrogenation of alkynes by Pd@borate monolith catalysts under continuous flow. J. Catal. 2014, 311, 212–220.

[6]

Luo, Q.; Wang, Z.; Chen, Y. Z.; Mao, S. J.; Wu, K. J.; Zhang, K. C.; Li, Q. C.; Lv, G. F.; Huang, G. D.; Li, H. R. et al. Dynamic modification of palladium catalysts with chain alkylamines for the selective hydrogenation of alkynes. ACS Appl. Mater. Interfaces 2021, 13, 31775–31784.

[7]

Wang, Z. S.; Garg, A.; Wang, L. X.; He, H. R.; Dasgupta, A.; Zanchet, D.; Janik, M. J.; Rioux, R. M.; Román-Leshkov, Y. Enhancement of alkyne semi-hydrogenation selectivity by electronic modification of platinum. ACS Catal. 2020, 10, 6763–6770.

[8]

Gilb, S.; Arenz, M.; Heiz, U. The polymerization of acetylene on supported metal clusters. Low Temp. Phys. 2006, 32, 1097–1103.

[9]

Abbet, S.; Sanchez, A.; Heiz, U.; Schneider, W. D.; Ferrari, A. M.; Pacchioni, G.; Rösch, N. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough! J. Am. Chem. Soc. 2000, 122, 3453–3457.

[10]

Bond, G. C.; Webb, G.; Wells, P. B.; Winterbottom, J. M. Patterns of behavior in catalysis by metals. J. Catal. 1962, 1, 74–84.

[11]

Boitiaux, J. P.; Cosyns, J.; Robert, E. Liquid phase hydrogenation of unsaturated hydrocarbons on palladium, platinum and rhodium catalysts. Part I: Kinetic study of 1-butene, 1,3-butadiene and 1-butyne hydrogenation on platinum. Appl. Catal. 1987, 32, 145–168.

[12]

Boitiaux, J. P.; Cosyns, J.; Robert, E. Liquid phase hydrogenation of unsaturated hydrocarbons on palladium, platinum and rhodium catalysts. Part II: Kinetic study of 1-butene, 1,3-butadiene and 1-butyne hydrogenation on rhodium; comparison with platinum and palladium. Appl. Catal. 1987, 32, 169–183.

[13]

Kuo, C. T.; Lu, Y. B.; Kovarik, L.; Engelhard, M.; Karim, A. M. Structure sensitivity of acetylene semi-hydrogenation on Pt single atoms and subnanometer clusters. ACS Catal. 2019, 9, 11030–11041.

[14]

Bridier, B.; Pérez-Ramírez, J. Cooperative effects in ternary Cu-Ni-Fe catalysts lead to enhanced alkene selectivity in alkyne hydrogenation. J. Am. Chem. Soc. 2010, 132, 4321–4327.

[15]

Gluhoi, A. C.; Bakker, J. W.; Nieuwenhuys, B. E. Gold, still a surprising catalyst: Selective hydrogenation of acetylene to ethylene over Au nanoparticles. Catal. Today 2010, 154, 13–20.

[16]

Carrasco, J.; Vilé, G.; Fernández-Torre, D.; Pérez, R.; Pérez-Ramírez, J.; Ganduglia-Pirovano, M. V. Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J. Phys. Chem. C 2014, 118, 5352–5360.

[17]

Mitsudome, T.; Yamamoto, M.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. One-step synthesis of core-gold/shell-ceria nanomaterial and its catalysis for highly selective semihydrogenation of alkynes. J. Am. Chem. Soc. 2015, 137, 13452–13455.

[18]

Büchele, S.; Chen, Z. P.; Fako, E.; Krumeich, F.; Hauert, R.; Safonova, O. V.; López, N.; Mitchell, S.; Pérez-Ramírez, J. Carrier-induced modification of palladium nanoparticles on porous boron nitride for alkyne semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19639–19644.

[19]

Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

[20]

López, N.; Vargas-Fuentes, C. Promoters in the hydrogenation of alkynes in mixtures: Insights from density functional theory. Chem. Commun. 2012, 48, 1379–1391.

[21]

Ma, T.; Wang, S.; Chen, M. D.; Maligal-Ganesh, R. V.; Wang, L. L.; Johnson, D. D.; Kramer, M. J.; Huang, W. Y.; Zhou, L. Toward phase and catalysis control: Tracking the formation of intermetallic nanoparticles at atomic scale. Chem 2019, 5, 1235–1247.

[22]
Hoffmann La Roche. Hydrogenation of acetylenic bond utilizing a palladium-lead catalyst. U. S. Patent 2, 681, 938A, June 22, 1954.
[23]

Ota, A.; Armbrüster, M.; Behrens, M.; Rosenthal, D.; Friedrich, M.; Kasatkin, I.; Girgsdies, F.; Zhang, W.; Wagner, R.; Schlögl, R. Intermetallic compound Pd2Ga as a selective catalyst for the semi-hydrogenation of acetylene: From model to high performance systems. J. Phys. Chem. C 2011, 115, 1368–1374.

[24]

Lou, B. H.; Kang, H. Q.; Yuan, W. T.; Ma, L.; Huang, W. X.; Wang, Y.; Jiang, Z.; Du, Y. H.; Zou, S. H.; Fan, J. Highly selective acetylene semihydrogenation catalyst with an operation window exceeding 150 °C. ACS Catal. 2021, 11, 6073–6080.

[25]

Matselko, O.; Zimmermann, R. R.; Ormeci, A.; Burkhardt, U.; Gladyshevskii, R.; Grin, Y.; Armbrüster, M. Revealing electronic influences in the semihydrogenation of acetylene. J. Phys. Chem. C 2018, 122, 21891–21896.

[26]

Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-silica composite-supported Pd catalysts for selective hydrogenation of alkynes. ACS Catal. 2013, 3, 1700–1708.

[27]

Kuwahara, Y.; Kango, H.; Yamashita, H. Pd nanoparticles and aminopolymers confined in hollow silica spheres as efficient and reusable heterogeneous catalysts for semihydrogenation of alkynes. ACS Catal. 2019, 9, 1993–2006.

[28]

Vilé, G.; Bridier, B.; Wichert, J.; Pérez-Ramírez, J. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angew. Chem., Int. Ed. 2012, 51, 8620–8623.

[29]

Vilé, G.; Colussi, S.; Krumeich, F.; Trovarelli, A.; Pérez-Ramírez, J. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angew. Chem., Int. Ed. 2014, 53, 12069–12072.

[30]

Albani, D.; Capdevila-Cortada, M.; Vilé, G.; Mitchell, S.; Martin, O.; López, N.; Pérez-Ramírez, J. Semihydrogenation of acetylene on indium oxide: Proposed single-ensemble catalysis. Angew. Chem., Int. Ed. 2017, 56, 10755–10760.

[31]

Zhang, W. J.; Qin, R. X.; Fu, G.; Zheng, N. F. Heterogeneous isomerization for stereoselective alkyne hydrogenation to trans-alkene mediated by frustrated hydrogen atoms. J. Am. Chem. Soc. 2021, 143, 15882–15890.

[32]

Boitiaux, J. P.; Cosyns, J.; Vasudevan, S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed palladium catalyst: Part I: Behaviour of small metal particles. Appl. Catal. 1983, 6, 41–51.

[33]

Boitiaux, J. P.; Cosyns, J.; Vasudevan, S. Hydrogenation of highly unsaturated hydrocarbons over highly dispersed Pd catalyst. :Part II:Ligand effect of piperidine. Appl. Catal. 1985, 15, 317–326.

[34]

Shen, L. F.; Mao, S. J.; Li, J. Q.; Li, M. M.; Chen, P.; Li, H. R.; Chen, Z. R.; Wang, Y. PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. J. Catal. 2017, 350, 13–20.

[35]

Goo, B. S.; Ham, K.; Han, Y. J.; Lee, S.; Jung, H.; Kwon, Y.; Kim, Y.; Hong, J. W.; Han, S. W. Surface engineering of palladium nanocrystals: Decoupling the activity of different surface sites on nanocrystal catalysts. Angew. Chem., Int. Ed. 2022, 61, e202202923.

[36]

Crespo-Quesada, M.; Yarulin, A.; Jin, M. S.; Xia, Y. N.; Kiwi-Minsker, L. Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: Which sites are most active and selective. J. Am. Chem. Soc. 2011, 133, 12787–12794.

[37]

Mao, S. J.; Zhao, B. W.; Wang, Z.; Gong, Y. T.; Lü, G. F.; Ma, X.; Yu, L. L.; Wang, Y. Tuning the catalytic performance for the semi-hydrogenation of alkynols by selectively poisoning the active sites of Pd catalysts. Green Chem. 2019, 21, 4143–4151.

[38]

Rajaram, J.; Narula, A. P. S.; Chawla, H. P. S.; Dev, S. Semihydrogenation of acetylenes: Modified lindlar catalyst. Tetrahedron 1983, 39, 2315–2322.

[39]

García-Mota, M.; Gómez-Díaz, J.; Novell-Leruth, G.; Vargas-Fuentes, C.; Bellarosa, L.; Bridier, B.; Pérez-Ramírez, J.; López, N. A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theor. Chem. Acc. 2011, 128, 663–673.

[40]
Theodorus, W. P. Process for the preparation of an aqueous colloidal precious metal suspension. WO Patent 2009096783, January 27, 2009.
[41]

Witte, P. T.; Boland, S.; Kirby, F.; Van Maanen, R.; Bleeker, B. F.; De Winter, D. A. M.; Post, J. A.; Geus, J. W.; Berben, P. H. NanoSelect Pd catalysts: What causes the high selectivity of these supported colloidal catalysts in alkyne semi-hydrogenation. ChemCatChem 2013, 5, 582–587.

[42]

Witte, P. T.; Berben, P. H.; Boland, S.; Boymans, E. H.; Vogt, D.; Geus, J. W.; Donkervoort, J. G. BASF NanoSelect™ technology: Innovative supported Pd- and Pt-based catalysts for selective hydrogenation reactions. Top. Catal. 2012, 55, 505–511.

[43]

Vilé, G.; Almora-Barrios, N.; Mitchell, S.; López, N.; Pérez-Ramírez, J. From the Lindlar catalyst to supported ligand-modified palladium nanoparticles: Selectivity patterns and accessibility constraints in the continuous-flow three-phase hydrogenation of acetylenic compounds. Chem.—Eur. J. 2014, 20, 5926–5937.

[44]

Kwon, S. G.; Krylova, G.; Sumer, A.; Schwartz, M. M.; Bunel, E. E.; Marshall, C. L.; Chattopadhyay, S.; Lee, B.; Jellinek, J.; Shevchenko, E. V. Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett. 2012, 12, 5382–5388.

[45]

Wang, C. P.; Wang, Z.; Mao, S. J.; Chen, Z. R.; Wang, Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chin. J. Catal. 2022, 43, 928–955.

[46]

Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 2010, 132, 14745–14747.

[47]

Osswald, J.; Giedigkeit, R.; Jentoft, R. E.; Armbrüster, M.; Girgsdies, F.; Kovnir, K.; Ressler, T.; Grin, Y.; Schlögl, R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene: Part I: Preparation and structural investigation under reaction conditions. J. Catal. 2008, 258, 210–218.

[48]

Cao, Y. Q.; Sui, Z. J.; Zhu, Y. A.; Zhou, X. G.; Chen, D. Selective hydrogenation of acetylene over Pd-In/Al2O3 catalyst: Promotional effect of indium and composition-dependent performance. ACS Catal. 2017, 7, 7835–7846.

[49]

González-Fernández, A.; Berenguer-Murcia, Á.; Cazorla-Amorós, D.; Cárdenas-Lizana, F. Zn-promoted selective gas-phase hydrogenation of tertiary and secondary C4 alkynols over supported Pd. ACS Appl. Mater. Interfaces 2020, 12, 28158–28168.

[50]

Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd catalysts for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 8567–8581.

[51]

Zhang, P. F.; Yuan, J. Y.; Fellinger, T. P.; Antonietti, M.; Li, H. R.; Wang, Y. Improving hydrothermal carbonization by using poly(ionic liquid)s. Angew. Chem., Int. Ed. 2013, 52, 6028–6032.

[52]

Luneau, M.; Shirman, T.; Foucher, A. C.; Duanmu, K. N.; Verbart, D. M. A.; Sautet, P.; Stach, E. A.; Aizenberg, J.; Madix, R. J.; Friend, C. M. Achieving high selectivity for alkyne hydrogenation at high conversions with compositionally optimized PdAu nanoparticle catalysts in raspberry colloid-templated SiO2. ACS Catal. 2020, 10, 441–450.

[53]

Fan, J. X.; Du, H. X.; Zhao, Y.; Wang, Q.; Liu, Y. N.; Li, D. Q.; Feng, J. T. Recent progress on rational design of bimetallic Pd based catalysts and their advanced catalysis. ACS Catal. 2020, 10, 13560–13583.

[54]

Gao, J.; Zhao, H. B.; Yang, X. F.; Koel, B. E.; Podkolzin, S. G. Geometric requirements for hydrocarbon catalytic sites on platinum surfaces. Angew. Chem., Int. Ed. 2014, 53, 3641–3644.

[55]

Wang, Z.; Chen, Y. Z.; Mao, S. J.; Wu, K. J.; Zhang, K. C.; Li, Q. C.; Wang, Y. Chemical insight into the structure and formation of coke on PtSn alloy during propane dehydrogenation. Adv. Sustainable Syst. 2020, 4, 2000092.

[56]

Dasgupta, A.; He, H. R.; Gong, R. S.; Shang, S. L.; Zimmerer, E. K.; Meyer, R. J.; Liu, Z. K.; Janik, M. J.; Rioux, R. M. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 2022, 14, 523–529.

[57]

Vorobyeva, E.; Fako, E.; Chen, Z. P.; Collins, S. M.; Johnstone, D.; Midgley, P. A.; Hauert, R.; Safonova, O. V.; Vilé, G.; López, N. et al. Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 8724–8729.

[58]

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

[59]

Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

[60]

Jiang, L. Z.; Liu, K. L.; Hung, S. F.; Zhou, L. Y.; Qin, R. X.; Zhang, Q. H.; Liu, P. X.; Gu, L.; Chen, H. M.; Fu, G. et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 2020, 15, 848–853.

[61]

Liu, J. L.; Uhlman, M. B.; Montemore, M. M.; Trimpalis, A.; Giannakakis, G.; Shan, J. J.; Cao, S. F.; Hannagan, R. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-hexyne to 1-hexene on PdAu single-atom alloy catalysts. ACS Catal. 2019, 9, 8757–8765.

[62]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[63]

Zhou, H. R.; Yang, X. F.; Wang, A. Q.; Miao, S.; Liu, X. Y.; Pan, X. L.; Su, Y.; Li, L.; Tan, Y.; Zhang, T. Pd/ZnO catalysts with different origins for high chemoselectivity in acetylene semi-hydrogenation. Chin. J. Catal. 2016, 37, 692–699.

[64]

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Ren, P. J.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 2018, 140, 13142–13146.

[65]

Liu, K. L.; Qin, R. X.; Zhou, L. Y.; Liu, P. X.; Zhang, Q. H.; Jing, W. T.; Ruan, P. P.; Gu, L.; Fu, G.; Zheng, N. F. Cu2O-supported atomically dispersed Pd catalysts for semihydrogenation of terminal alkynes: Critical role of oxide supports. CCS Chem. 2019, 1, 207–214.

[66]

Gao, R. J.; Xu, J. S.; Wang, J.; Lim, J.; Peng, C.; Pan, L.; Zhang, X. W.; Yang, H. M.; Zou, J. J. Pd/Fe2O3 with electronic coupling single-site Pd–Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573–581.

[67]

Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

[68]

Chen, Y. Z.; Wang, Z.; Mao, S. J.; Wang, Y. Rational design of hydrogenation catalysts using nitrogen-doped porous carbon. Chin. J. Catal. 2019, 40, 971–979.

[69]

Deng, D. S.; Yang, Y.; Gong, Y. T.; Li, Y.; Xu, X.; Wang, Y. Palladium nanoparticles supported on mpg-C3N4 as active catalyst for semihydrogenation of phenylacetylene under mild conditions. Green Chem. 2013, 15, 2525–2531.

[70]

Wei, Z. Z.; Yao, Z. H.; Zhou, Q.; Zhuang, G. L.; Zhong, X.; Deng, S. W.; Li, X. N.; Wang, J. G. Optimizing alkyne hydrogenation performance of Pd on carbon in situ decorated with oxygen-deficient TiO2 by integrating the reaction and diffusion. ACS Catal. 2019, 9, 10656–10667.

[71]

Zou, S. H.; Lou, B. H.; Yang, K. R.; Yuan, W. T.; Zhu, C. Z.; Zhu, Y. H.; Du, Y. H.; Lu, L. F.; Liu, J. J.; Huang, W. X. et al. Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nat. Commun. 2021, 12, 5770.

[72]

Zhang, Q. F.; Xu, Y. Q.; Wang, Q. T.; Huang, W. M.; Zhou, J.; Jiang, Y. S.; Xu, H.; Guo, L. L.; Zhang, P. Z.; Zhao, J. et al. Outstanding catalytic performance in the semi-hydrogenation of acetylene in a front-end process by establishing a “hydrogen deficient” phase. Chem. Commun. 2019, 55, 14910–14913.

[73]

Liu, Y. W.; Wang, B. X.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D. S.; Li, Y. D. Polyoxometalate-based metal-organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single Pd atom sites. Angew. Chem., Int. Ed. 2021, 60, 22522–22528.

[74]

Wang, S.; Zhao, Z. J.; Chang, X.; Zhao, J. B.; Tian, H.; Yang, C. S.; Li, M. R.; Fu, Q.; Mu, R. T.; Gong, J. L. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes. Angew. Chem., Int. Ed. 2019, 58, 7668–7672.

[75]

Yuan, Z. J.; Liu, L.; Ru, W.; Zhou, D. J.; Kuang, Y.; Feng, J. T.; Liu, B.; Sun, X. M. 3D printed hierarchical spinel monolithic catalysts for highly efficient semi-hydrogenation of acetylene. Nano Res. 2022, 15, 6010–6018.

[76]

Azizi, Y.; Petit, C.; Pitchon, V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. J. Catal. 2008, 256, 338–344.

[77]

Jia, J. F.; Haraki, K.; Kondo, J. N.; Domen, K.; Tamaru, K. Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J. Phys. Chem. B 2000, 104, 11153–11156.

[78]

Segura, Y.; López, N.; Pérez-Ramírez, J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne + alkene mixtures: Triple- versus double-bond activation. J. Catal. 2007, 247, 383–386.

[79]

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 2008, 320, 1320–1322.

[80]

Spanjers, C. S.; Held, J. T.; Jones, M. J.; Stanley, D. D.; Sim, R. S.; Janik, M. J.; Rioux, R. M. Zinc inclusion to heterogeneous nickel catalysts reduces oligomerization during the semi-hydrogenation of acetylene. J. Catal. 2014, 316, 164–173.

[81]

Rao, D. M.; Sun, T.; Yang, Y. S.; Yin, P.; Pu, M.; Yan, H.; Wei, M. Theoretical study on the reaction mechanism and selectivity of acetylene semi-hydrogenation on Ni-Sn intermetallic catalysts. Phys. Chem. Chem. Phys. 2019, 21, 1384–1392.

[82]

Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z. J.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni-Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

[83]

Wang, L.; Li, F. X.; Chen, Y. J.; Chen, J. X. Selective hydrogenation of acetylene on SiO2-supported Ni-Ga alloy and intermetallic compound. J. Energy Chem. 2019, 29, 40–49.

[84]

Liu, Y. X.; Liu, X. W.; Feng, Q. C.; He, D. S.; Zhang, L. B.; Lian, C.; Shen, R. A.; Zhao, G. F.; Ji, Y. J.; Wang, D. S. et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation of alkynes. Adv. Mater. 2016, 28, 4747–4754.

[85]

Nikolaev, S. A.; Smirnov, V. V.; Vasil’kov, A. Y.; Podshibikhin, V. L. Synergism of the catalytic effect of nanosized gold-nickel catalysts in the reaction of selective acetylene hydrogenation to ethylene. Kinet. Catal. 2010, 51, 375–379.

[86]

Yang, B.; Burch, R.; Hardacre, C.; Headdock, G.; Hu, P. Origin of the increase of activity and selectivity of nickel doped by Au, Ag, and Cu for acetylene hydrogenation. ACS Catal. 2012, 2, 1027–1032.

[87]

Fu, B. A.; McCue, A. J.; Liu, Y. N.; Weng, S. X.; Song, Y. F.; He, Y. F.; Feng, J. T.; Li, D. Q. Highly selective and stable isolated non-noble metal atom catalysts for selective hydrogenation of acetylene. ACS Catal. 2022, 12, 607–615.

[88]

Shi, X. X.; Lin, Y.; Huang, L.; Sun, Z. H.; Yang, Y.; Zhou, X. H.; Vovk, E.; Liu, X. Y.; Huang, X. H.; Sun, M. et al. Copper catalysts in semihydrogenation of acetylene: From single atoms to nanoparticles. ACS Catal. 2020, 10, 3495–3504.

[89]

Huang, F.; Deng, Y. C.; Chen, Y. L.; Cai, X. B.; Peng, M.; Jia, Z. M.; Xie, J. L.; Xiao, D. Q.; Wen, X. D.; Wang, N. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 2019, 10, 4431.

[90]

Huang, F.; Peng, M.; Chen, Y. L.; Gao, Z. R.; Cai, X. B.; Xie, J. L.; Xiao, D. Q.; Jin, L.; Wang, G. Q.; Wen, X. D. et al. Insight into the activity of atomically dispersed Cu catalysts for semihydrogenation of acetylene: Impact of coordination environments. ACS Catal. 2022, 12, 48–57.

[91]

Fu, F. Z.; Liu, Y. N.; Li, Y. W.; Fu, B. A.; Zheng, L. R.; Feng, J. T.; Li, D. Q. Interfacial bifunctional effect promoted non-noble Cu/FeyMgOx catalysts for selective hydrogenation of acetylene. ACS Catal. 2021, 11, 11117–11128.

[92]

Zhang, R. G.; Zhao, B.; He, L. L.; Wang, A. J.; Wang, B. J. Cost-effective promoter-doped Cu-based bimetallic catalysts for the selective hydrogenation of C2H2 to C2H4: The effect of the promoter on selectivity and activity. Phys. Chem. Chem. Phys. 2018, 20, 17487–17496.

[93]

Armbrüster, M.; Kovnir, K.; Friedrich, M.; Teschner, D.; Wowsnick, G.; Hahne, M.; Gille, P.; Szentmiklósi, L.; Feuerbacher, M.; Heggen, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 2012, 11, 690–693.

[94]

Kojima, T.; Kameoka, S.; Tsai, A. P. Heusler alloys: A group of novel catalysts. ACS Omega 2017, 2, 147–153.

[95]

Kojima, T.; Kameoka, S.; Fujii, S.; Ueda, S.; Tsai, A. P. Catalysis-tunable Heusler alloys in selective hydrogenation of alkynes: A new potential for old materials. Sci. Adv. 2018, 4, eaat6063.

[96]

Greeley, J.; Mavrikakis, M. A first-principles study of surface and subsurface H on and in Ni (111): Diffusional properties and coverage-dependent behavior. Surf. Sci. 2003, 540, 215–229.

[97]

Ceyer, S. T. The unique chemistry of hydrogen beneath the surface:  Catalytic hydrogenation of hydrocarbons. Acc. Chem. Res. 2001, 34, 737–744.

[98]

Daley, S. P.; Utz, A. L.; Trautman, T. R.; Ceyer, S. T. Ethylene hydrogenation on Ni (111) by bulk hydrogen. J. Am. Chem. Soc. 1994, 116, 6001–6002.

[99]

Haug, K. L.; Bürgi, T.; Trautman, T. R.; Ceyer, S. T. Distinctive reactivities of surface-bound H and bulk H for the catalytic hydrogenation of acetylene. J. Am. Chem. Soc. 1998, 120, 8885–8886.

[100]

Michaelides, A.; Hu, P.; Alavi, A. Physical origin of the high reactivity of subsurface hydrogen in catalytic hydrogenation. J. Chem. Phys. 1999, 111, 1343–1345.

[101]

Henkelman, G.; Arnaldsson, A.; Jónsson, H. Theoretical calculations of CH4 and H2 associative desorption from Ni (111): Could subsurface hydrogen play an important role? J. Chem. Phys. 2006, 124, 044706.

[102]

Ledentu, V.; Dong, W.; Sautet, P. Heterogeneous catalysis through subsurface sites. J. Am. Chem. Soc. 2000, 122, 1796–1801.

[103]

Ohno, S.; Wilde, M.; Mukai, K.; Yoshinobu, J.; Fukutani, K. Mechanism of olefin hydrogenation catalysis driven by palladium-dissolved hydrogen. J. Phys. Chem. C 2016, 120, 11481–11489.

[104]

Aleksandrov, H. A.; Kozlov, S. M.; Schauermann, S.; Vayssilov, G. N.; Neyman, K. M. How absorbed hydrogen affects the catalytic activity of transition metals. Angew. Chem., Int. Ed. 2014, 53, 13371–13375.

[105]

Khan, N. A.; Shaikhutdinov, S.; Freund, H. J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal. Lett. 2006, 108, 159–164.

[106]

Guo, Q.; Chen, R. T.; Guo, J. P.; Qin, C.; Xiong, Z. T.; Yan, H. X.; Gao, W. B.; Pei, Q. J.; Wu, A. A.; Chen, P. Enabling semihydrogenation of alkynes to alkenes by using a calcium palladium complex hydride. J. Am. Chem. Soc. 2021, 143, 20891–20897.

[107]

Zhang, J.; Sui, Z. J.; Zhu, Y. A.; Chen, D.; Zhou, X. G.; Yuan, W. K. Composition of the green oil in hydrogenation of acetylene over a commercial Pd-Ag/Al2O3 catalyst. Chem. Eng. Technol. 2016, 39, 865–873.

[108]

Liu, Y. N.; Fu, F. Z.; McCue, A.; Jones, W.; Rao, D. M.; Feng, J. T.; He, Y. F.; Li, D. Q. Adsorbate-induced structural evolution of Pd catalyst for selective hydrogenation of acetylene. ACS Catal. 2020, 10, 15048–15059.

[109]

Teschner, D.; Vass, E.; Hävecker, M.; Zafeiratos, S.; Schnörch, P.; Sauer, H.; Knop-Gericke, A.; Schlögl, R.; Chamam, M.; Wootsch, A. et al. Alkyne hydrogenation over Pd catalysts: A new paradigm. J. Catal. 2006, 242, 26–37.

[110]

Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86–89.

[111]

Lu, C. Y.; Wang, Y.; Zhang, R. G.; Wang, B. J.; Wang, A. J. Preparation of an unsupported copper-based catalyst for selective hydrogenation of acetylene from Cu2O nanocubes. ACS Appl. Mater. Interfaces 2020, 12, 46027–46036.

[112]

Lu, C. Y.; Zeng, A. N.; Wang, Y.; Wang, A. J. Copper-based catalysts for selective hydrogenation of acetylene derived from Cu(OH)2. ACS Omega 2021, 6, 3363–3371.

[113]

Lu, C. Y.; Zeng, A. N.; Wang, Y.; Wang, A. J. High-performance catalysts derived from cupric subcarbonate for selective hydrogenation of acetylene in an ethylene stream. Eur. J. Inorg. Chem. 2021, 2021, 997–1004.

[114]

Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. On the role of surface modifications of palladium catalysts in the selective hydrogenation of acetylene. Angew. Chem., Int. Ed. 2008, 47, 9299–9302.

[115]

Piqué, O.; Koleva, I. Z.; Viñes, F.; Aleksandrov, H. A.; Vayssilov, G. N.; Illas, F. Subsurface carbon: A general feature of noble metals. Angew. Chem., Int. Ed. 2019, 58, 1744–1748.

[116]

Teschner, D.; Borsodi, J.; Kis, Z.; Szentmiklósi, L.; Révay, Z.; Knop-Gericke, A.; Schlögl, R.; Torres, D.; Sautet, P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. J. Phys. Chem. C 2010, 114, 2293–2299.

[117]

Niu, Y. M.; Huang, X.; Wang, Y. Z.; Xu, M.; Chen, J. N.; Xu, S. L.; Willinger, M. G.; Zhang, W.; Wei, M.; Zhang, B. S. Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne. Nat. Commun. 2020, 11, 3324.

[118]

Garcia-Ortiz, A.; Vidal, J. D.; Iborra, S.; Climent, M. J.; Cored, J.; Ruano, D.; Pérez-Dieste, V.; Concepción, P.; Corma, A. Synthesis of a hybrid Pd0/Pd-carbide/carbon catalyst material with high selectivity for hydrogenation reactions. J. Catal. 2020, 389, 706–713.

[119]

Chan, C. W. A.; Xie, Y. L.; Cailuo, N.; Yu, K. M. K.; Cookson, J.; Bishop, P.; Tsang, S. C. New environmentally friendly catalysts containing Pd-interstitial carbon made from Pd-glucose precursors for ultraselective hydrogenations in the liquid phase. Chem. Commun. 2011, 47, 7971–7973.

[120]

Wang, S. H.; Uwakwe, K.; Yu, L.; Ye, J. Y.; Zhu, Y. Z.; Hu, J. T.; Chen, R. X.; Zhang, Z.; Zhou, Z. Y.; Li, J. F. et al. Highly efficient ethylene production via electrocatalytic hydrogenation of acetylene under mild conditions. Nat. Commun. 2021, 12, 7072.

[121]

Zhang, L.; Chen, Z.; Liu, Z. P.; Bu, J.; Ma, W. X.; Yan, C.; Bai, R.; Lin, J.; Zhang, Q. Y.; Liu, J. Z. et al. Efficient electrocatalytic acetylene semihydrogenation by electron-rich metal sites in N-heterocyclic carbene metal complexes. Nat. Commun. 2021, 12, 6574.

[122]

Bu, J.; Liu, Z. P.; Ma, W. X.; Zhang, L.; Wang, T.; Zhang, H. P.; Zhang, Q. Y.; Feng, X. L.; Zhang, J. Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nat. Catal. 2021, 4, 557–564.

[123]

Shi, R.; Wang, Z. P.; Zhao, Y. X.; Waterhouse, G. I. N.; Li, Z. H.; Zhang, B. K.; Sun, Z. M.; Xia, C.; Wang, H. T.; Zhang, T. R. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 2021, 4, 565–574.

[124]

Wu, Y. M.; Liu, C. B.; Wang, C. H.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 2021, 12, 3881.

[125]

Lin, B. Q.; Wu, X.; Xie, L.; Kang, Y. Q.; Du, H. D.; Kang, F. Y.; Li, J.; Gan, L. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew. Chem., Int. Ed. 2020, 59, 20348–20352.

[126]

Li, X. T.; Chen, L.; Wei, G. F.; Shang, C.; Liu, Z. P. Sharp increase in catalytic selectivity in acetylene semihydrogenation on Pd achieved by a machine learning simulation-guided experiment. ACS Catal. 2020, 10, 9694–9705.

[127]

Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. In situ surface structures of PdAg catalyst and their influence on acetylene semihydrogenation revealed by machine learning and experiment. J. Am. Chem. Soc. 2021, 143, 6281–6292.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2022
Revised: 25 May 2022
Accepted: 26 May 2022
Published: 11 July 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Financial support from the National Key Research and Development Program of China (No. 2021YFB3801600), the National Natural Science Foundation of China (Nos. 21872121 and 21908189), and the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province (Nos. 2022C01218 and 2022C01151 ) are greatly appreciated.

Return