Journal Home > Volume 15 , Issue 10

Photoreduction of hexavalent uranium (U(VI)) by semiconductor provides a novel and effective avenue for uranium extraction. Unfortunately, the traditional metal oxide and sulfide semiconductors suffer from the lack of confinement sites to U(VI), which resulted in the long period (~ 1 h) to achieve a high U(VI) extraction efficiency of > 90%. Herein, we successfully constructed WS2 nanosheets and created in-situ oxidized domains on the surfaces (O-WS2) to promote the uranium extraction and the corresponding removal kinetics. In this system, the O7.7-WS2 nanosheets exhibited a considerable U(VI) extraction efficiency of > 90% within 20 min in 8 mg·L–1 U(VI)-containing solution, which represented the highly efficient U(VI) removal performance. In 200 mg·L–1 U(VI)-containing solution, the O7.7-WS2 nanosheets exhibited an extraction capacity of 652.4 mg·g–1. The mechanism study revealed that the oxidized surface tended to trap hydrogen atom and in-situ form hydroxyl groups in defect sites. Evidenced by a series of experiment, such as kinetic isotope effect, 1H nuclear magnetic resonance (NMR) spectra, and X-ray absorption near-edge structure (XANES) spectra, the in-situ formed hydroxyl groups participated in the uranium reduction, which dramatically enhanced uranium extraction kinetics and efficiency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ oxidized tungsten disulfide nanosheets achieve ultrafast photocatalytic extraction of uranium through hydroxyl-mediated binding and reduction

Show Author's information Huanhuan Liu1,§Jia Lei1,§Changyao Gong1Ye Li1Huimei Chen2Jiali Chen1Fengchun Wen1Dengjiang Fu1Yan Liu2( )Wenkun Zhu1( )Rong He1( )
State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, Southwest University of Science and Technology, Mianyang 621010, China
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China

§ Huanhuan Liu and Jia Lei contributed equally to this work.

Abstract

Photoreduction of hexavalent uranium (U(VI)) by semiconductor provides a novel and effective avenue for uranium extraction. Unfortunately, the traditional metal oxide and sulfide semiconductors suffer from the lack of confinement sites to U(VI), which resulted in the long period (~ 1 h) to achieve a high U(VI) extraction efficiency of > 90%. Herein, we successfully constructed WS2 nanosheets and created in-situ oxidized domains on the surfaces (O-WS2) to promote the uranium extraction and the corresponding removal kinetics. In this system, the O7.7-WS2 nanosheets exhibited a considerable U(VI) extraction efficiency of > 90% within 20 min in 8 mg·L–1 U(VI)-containing solution, which represented the highly efficient U(VI) removal performance. In 200 mg·L–1 U(VI)-containing solution, the O7.7-WS2 nanosheets exhibited an extraction capacity of 652.4 mg·g–1. The mechanism study revealed that the oxidized surface tended to trap hydrogen atom and in-situ form hydroxyl groups in defect sites. Evidenced by a series of experiment, such as kinetic isotope effect, 1H nuclear magnetic resonance (NMR) spectra, and X-ray absorption near-edge structure (XANES) spectra, the in-situ formed hydroxyl groups participated in the uranium reduction, which dramatically enhanced uranium extraction kinetics and efficiency.

Keywords: uranium, WS2 nanosheets, hydroxyl groups, in-situ oxidization, photoreduction ABSTRACT

References(48)

1

Yuan, Y.; Yang, Y. J.; Ma, X. J.; Meng, Q. H.; Wang, L. L.; Zhao, S.; Zhu, G. S. Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv. Mater. 2018, 30, 1706507.

2

Yu, Q. H.; Yuan, Y. H.; Wen, J.; Zhao, X. M.; Zhao, S. L.; Wang, D.; Li, C. Y.; Wang, X. L.; Wang, N. A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater. Adv. Sci. 2019, 6, 1900002.

3

Zhang, S.; Li, H.; Wang, S. A. Construction of an ion pathway boosts uranium extraction from seawater. Chem 2020, 6, 1504–1505.

4

Wang, X. X.; Chen, L.; Wang, L.; Fan, Q. H.; Pan, D. Q.; Li, J. X.; Chi, F. T.; Xie, Y.; Yu, S. J.; Xiao, C. L. et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 2019, 62, 933–967.

5

Xie, Y.; Chen, C. L.; Ren, X. M.; Wang, X. X.; Wang, H. Y.; Wang, X. K. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Prog. Mater. Sci. 2019, 103, 180–234.

6

Li, H.; Wang, S. A. Reaction: Semiconducting MOFs offer new strategy for uranium extraction from seawater. Chem 2021, 7, 279–280.

7

Wang, N.; Pang, H. W.; Yu, S. J.; Gu, P. C.; Song, S.; Wang, H. Q.; Wang, X. K. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: A review. Acta Chim. Sin. 2019, 77, 143–152.

8

Yu K. F.; Tang L.; Cao X.; Guo Z. H.; Zhang Y.; Li N.; Dong C. X.; Gong X.; Chen T.; He R. et al. Semiconducting metal-organic frameworks decorated with spatially separated dual cocatalysts for efficient Uranium(VI) photoreduction. Adv. Funct. Mater. 2022, 32, 2200315.

9

Wu, F. C.; Pu, N.; Ye, G.; Sun, T. X.; Wang, Z.; Song, Y.; Wang, W. Q.; Huo, X. M.; Lu, Y. X.; Chen, J. Performance and mechanism of uranium adsorption from seawater to poly(dopamine)-inspired sorbents. Environ. Sci. Technol. 2017, 51, 4606–4614.

10

Zhang, M. X.; Liang, C. Y.; Cheng, G. D.; Chen, J. C.; Wang, Y. M.; He, L. W.; Cheng, L. W.; Gong, S. C.; Zhang, D.; Li, J. et al. Intrinsic semiconducting behavior in a large mixed-valent uranium(V/VI) cluster. Angew. Chem. , Int. Ed. 2021, 60, 9886–9890.

11

Chen, M. W.; Liu, T.; Zhang, X. B.; Zhang, R. Q.; Tang, S.; Yuan, Y. H.; Xie, Z. J.; Liu, Y. J.; Wang, H.; Fedorovich, K. V. et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel. Adv. Funct. Mater. 2021, 31, 2100106.

12

Liu, H. H.; Lei, J.; Chen, J. L.; Li, Y.; Gong, C. Y.; Yang, S. J.; Zheng, Y. M.; Lu, N.; Liu, Y.; Zhu, W. K.; He, R. Hydrogen-incorporated vanadium dioxide nanosheets enable efficient uranium confinement and photoreduction. Nano Res. 2022, 15, 2943–2951.

13

Zhang, H. L.; Liu, W.; Li, A.; Zhang, D.; Li, X. Y.; Zhai, F. W.; Chen, L. H.; Chen, L.; Wang, Y. L.; Wang, S. A. Three mechanisms in one material: Uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem. , Int. Ed. 2019, 58, 16110–16114.

14

Khaing, K. K.; Yin, D. G.; Ouyang, Y. G.; Xiao, S. T.; Liu, B. Q.; Deng, L. L.; Li, L. Q.; Guo, X. D.; Wang, J.; Liu, J. L. et al. Fabrication of 2D-2D heterojunction catalyst with covalent organic framework (COF) and MoS2 for highly efficient photocatalytic degradation of organic pollutants. Inorg. Chem. 2020, 59, 6942–6952.

15

Lei, J.; Liu, H. H.; Yuan, C. P.; Chen, Q.; Liu, J. A.; Wen, F. C.; Jiang, X. Y.; Deng, W. J.; Cui, X. D.; Duan, T. et al. Enhanced photoreduction of U(VI) on WO3 nanosheets by oxygen defect engineering. Chem. Eng. J. 2021, 416, 129164.

16

Feng, J. N.; Yang, Z. Q.; He, S.; Niu, X. J.; Zhang, T. P.; Ding, A.; Liang, H.; Feng, X. C. Photocatalytic reduction of uranium(VI) under visible light with Sn-doped In2S3 microspheres. Chemosphere 2018, 212, 114–123.

17

LI, H.; Zhai, F. W.; Gui, D. X.; Wang, X. X.; Wu, C. F.; Zhang, D.; Dai, X.; Deng, H.; Su, X. T.; Juan, D. W. et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B-Environ. 2019, 254, 47–54.

18

Dong, C. X.; Qiao, T. T.; Huang, Y. B.; Yuan, X.; Lian, J.; Duan, T.; Zhu, W. K.; He, R. Efficient photocatalytic extraction of uranium over ethylenediamine capped cadmium sulfide telluride nanobelts. ACS Appl. Mater. Interfaces 2021, 13, 11968–11976.

19

Velasco, C. A.; Artyushkova, K.; Ali, A. M. S.; Osburn, C. L.; Gonzalez-Estrella, J.; Lezama-Pacheco, J. S.; Cabaniss, S. E.; Cerrato, J. M. Organic functional group chemistry in mineralized deposits containing U(IV) and U(VI) from the jackpile mine in new mexico. Environ. Sci. Technol. 2019, 53, 5758–5767.

20

Bonato, M.; Allen, G. C.; Scott, T. B. Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes. Micro Nano Lett. 2008, 3, 57–61.

21

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

22

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

23

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

24

Xu, J.; Cheng, X. L.; Liu, T.; Yu, Y. Q.; Song, L. L.; You, Y.; Wang, T.; Zhang, J. J. Oxygen-incorporated and layer-by-layer stacked WS2 nanosheets for broadband, self-driven and fast-response photodetectiont. Nanoscale 2019, 11, 6810–6816.

25

Yang, Z. L.; Gao, D. Q.; Zhang, J.; Xu, Q.; Shi, S. P.; Tao, K.; Xue, D. S. Realization of high Curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology. Nanoscale 2015, 7, 650–658.

26

Yan, X. B.; Zhao, Q. L.; Chen, A. P.; Zhao, J. H.; Zhou, Z. Y.; Wang, J. J.; Wang, H.; Zhang, L.; Li, X. Y.; Xiao, Z. A. et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423.

27

Hu, Z. L.; Avila, J.; Wang, X. Y.; Leong, J. F.; Zhang, Q.; Liu, Y. P.; Asensio, M. C.; Lu, J. P.; Carvalho, A.; Sow, C. H. et al. The role of oxygen atoms on excitons at the edges of monolayer WS2. Nano Lett. 2019, 19, 4641–4650.

28

Tian, W.; Chen, C.; Meng, L. X.; Xu, W. W.; Cao, F. R.; Li, L. PVP treatment induced gradient oxygen doping in In2S3 nanosheet to boost solar water oxidation of WO3 nanoarray photoanode. Adv. Energy Mater. 2020, 10, 1903951.

29

Zhang, N.; Li, X. Y.; Ye, H. C.; Chen, S. M.; Ju, H. X.; Liu, D. B.; Lin, Y.; Ye, W.; Wang, C. M.; Xu, Q. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 2016, 138, 8928–8935.

30

Wang, Z.; Liu, H. X.; Lei, Z.; Huang, L. Q.; Wu, T.; Liu, S.; Ye, G. Y.; Lu, Y. X.; Wang, X. K. Graphene aerogel for photocatalysis-assist uranium elimination under visible light and air atmosphere. Chem. Eng. J. 2020, 402, 126256.

31

Dai, Z. R.; Sun, Y. S.; Zhang, H.; Ding, D. X.; Li, L. Photocatalytic reduction of U(VI) in wastewater by mGO/g-C3N4 nanocomposite under visible LED light irradiation. Chemosphere 2020, 254, 126671.

32

Jiang, P. Y.; Yu, K. F.; Yuan, H. B.; He, R.; Sun, M. P.; Tao, F.; Wang, L. B.; Zhu, W. K. Encapsulating Ag nanoparticles into ZIF-8 as an efficient strategy to boost uranium photoreduction without sacrificial agents. J. Mater. Chem. A 2021, 9, 9809–9814.

33

Liu, S.; Wang, Z.; Lu, Y. X.; Li, H. P.; Chen, X. J.; Wei, G. Y.; Wu, T.; Maguire, D. J.; Ye, G.; Chen, J. Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Appl. Catal. B-Environ. 2021, 282, 119523.

34

Li, P.; Wang, J. J.; Peng, T.; Wang, Y.; Liang, J. J.; Pan, D. Q.; Fan, Q. H. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI). Appl. Surf. Sci. 2019, 483, 670–676.

35

Jiang, X. H.; Xing, Q. J.; Luo, X. B.; Li, F.; Zou, J. P.; Liu, S. S.; Li, X.; Wang, X. K. Simultaneous photoreduction of uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B-Environ. 2018, 228, 29–38.

36

Guo, Y. D.; Guo, Y. Q.; Wang, X. G.; Li, P.; Kong, L. W.; Wang, G. H.; Li, X. M.; Liu, Y. H. Enhanced photocatalytic reduction activity of uranium(VI) from aqueous solution using the Fe2O3-graphene oxide nanocomposite. Dalton Trans. 2017, 46, 14762–14770.

37

Hu, L.; Yan, X. W.; Zhang, X. J.; Shan, D. Integration of adsorption and reduction for uranium uptake based on SrTiO3/TiO2 electrospun nanofibers. Appl. Surf. Sci. 2018, 428, 819–824.

38

Deng, H.; Li, Z. J.; Wang, L.; Yuan, L. Y.; Lan, J. H.; Chang, Z. Y.; Chai, Z. F.; Shi, W. Q. Nanolayered Ti3C2 and SrTiO3 composites for photocatalytic reduction and removal of uranium(VI). ACS Appl. Nano Mater. 2019, 2, 2283–2294.

39

Chen, T.; Liu, B.; Li, M. X.; Zhou, L.; Lin, D. J.; Ding, X. B.; Lian, J.; Li, J. W.; He, R.; Duan, T. et al. Efficient uranium reduction of bacterial cellulose-MoS2 heterojunction via the synergistically effect of Schottky junction and S-vacancies engineering. Chem. Eng. J. 2021, 406, 126791.

40

Liu, X. N.; Du, P. H.; Pan, W. Y.; Dang, C. Y.; Qian, T. W.; Liu, H. F.; Liu, W.; Zhao, D. Y. Immobilization of uranium(VI) by niobate/titanate nanoflakes heterojunction through combined adsorption and solar-light-driven photocatalytic reduction. Appl. Catal. B-Environ. 2018, 231, 11–22.

41

Lu, S. H.; Zhu, K. R.; Hayat, T.; Alharbi, N. S.; Chen, C. L.; Song, G.; Chen, D. Y.; Sun, Y. B. Influence of carbonate on sequestration of U(VI) on perovskite. J. Hazard. Mater. 2019, 364, 100–107.

42

Xu, Y. C.; Zhang, H. S.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Yu, J.; Zhu, J. H.; Li, R. M.; Wang, J. Surface hybridization of π-conjugate structure cyclized polyacrylonitrile and radial microsphere shaped TiO2 for reducing U(VI) to U(IV). J. Hazard. Mater. 2021, 416, 125812.

43

Singer, D. M.; Chatman, S. M.; Ilton, E. S.; Rosso, K. M.; Banfield, J. F.; Waychunas, G. A. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite(111) surface. Environ. Sci. Technol. 2012, 46, 3811–3820.

44

Lei, J.; Liu, H. H.; Wen, F. C.; Jiang, X. Y.; Yuan, C. P.; Chen, Q.; Liu, J. A.; Cui, X. D.; Yang, F.; Zhu, W. K. et al. Tellurium nanowires wrapped by surface oxidized tin disulfide nanosheets achieves efficient photocatalytic reduction of U(VI). Chem. Eng. J. 2021, 426, 130756.

45

Kobayashi, T.; Sun, Y. Y. L.; Prenger, K.; Jiang, D. E.; Naguib, M.; Pruski, M. Nature of terminating hydroxyl groups and intercalating water in Ti3C2Tx MXenes: A study by 1H solid-state NMR and DFT calculations. J. Phys. Chem. C 2020, 124, 13649–13655.

46

Chen, K. Z.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z. H.; Hung, I.; White, J. L. Structure and catalytic characterization of a second framework Al(IV) site in zeolite catalysts revealed by NMR at 35.2 T. J. Am. Chem. Soc. 2020, 142, 7514–7523.

47

Quackenbush, N. F.; Paik, H.; Holtz, M. E.; Wahila, M. J.; Moyer, J. A.; Barthel, S.; Wehling, T. O.; Arena, D. A.; Woicik, J. C.; Muller, D. A. et al. Reducing orbital occupancy in VO2 suppresses Mott physics while Peierls distortions persist. Phys. Rev. B 2017, 96, 081103.

48

Wang, H.; Chen, S. C.; Yong, D. Y.; Zhang, X. D.; Li, S.; Shao, W.; Sun, X. S.; Pan, B. C.; Xie, Y. Giant electron–hole interactions in confined layered structures for molecular oxygen activation. J. Am. Chem. Soc. 2017, 139, 4737–4742.

File
12274_2022_4559_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 February 2022
Revised: 15 May 2022
Accepted: 19 May 2022
Published: 05 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21902130, 21906154, and 21976147), Sichuan Science and Technology Program (Nos. 2022YFG0371, 2020JDJQ0060, and 2020JDRC0089), and Natural Science Foundation of Anhui province (No. 2008085QB81). The numerical calculations in this paper have been done on Hefei advanced computing center.

Return