Journal Home > Volume 15 , Issue 10

Layered double hydroxides (LDHs) with abundant accessible active sites are promising electrode materials for hybrid supercapacitor (HSC) due to their ultrahigh theoretical capacitances. However, the structural agglomeration of LDH leads to poor rate capability and durability. Herein, we construct a diffusion-controlled interface in hierarchical architecture of metal-organic framework (MOF) HKUST-1@cobalt-nickel LDH (denoted as HKUST-1@CoNiLDH) through an in situ etching/electro-deposition strategy. The rapid charge transfer and ionic diffusion in HKUST-1@CoNiLDH deliver a remarkable specific capacity of 297.23 mAh·g−1 at 1 A·g−1, superior to mostly reported LDH-based electrodes. More importantly, the as-prepared HKUST-1@CoNiLDH//activated carbon HSC exhibit a high energy density of 39.8 Wh·kg−1 at a power density of 799.9 W·kg−1 with an outstanding capacitance retention of 90% after 5,000 charge–discharge cycles. The in-depth understanding of the ionic diffusion among the MOF/LDH interfaces will greatly promote the further development of designing and synthesizing high performance energy conversion and storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors

Show Author's information Yanan Zhang1Junlei Chen1Chenyang Su1Keyao Chen1Huabin Zhang2Yuhao Yang1Wenhuan Huang1( )
Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

Abstract

Layered double hydroxides (LDHs) with abundant accessible active sites are promising electrode materials for hybrid supercapacitor (HSC) due to their ultrahigh theoretical capacitances. However, the structural agglomeration of LDH leads to poor rate capability and durability. Herein, we construct a diffusion-controlled interface in hierarchical architecture of metal-organic framework (MOF) HKUST-1@cobalt-nickel LDH (denoted as HKUST-1@CoNiLDH) through an in situ etching/electro-deposition strategy. The rapid charge transfer and ionic diffusion in HKUST-1@CoNiLDH deliver a remarkable specific capacity of 297.23 mAh·g−1 at 1 A·g−1, superior to mostly reported LDH-based electrodes. More importantly, the as-prepared HKUST-1@CoNiLDH//activated carbon HSC exhibit a high energy density of 39.8 Wh·kg−1 at a power density of 799.9 W·kg−1 with an outstanding capacitance retention of 90% after 5,000 charge–discharge cycles. The in-depth understanding of the ionic diffusion among the MOF/LDH interfaces will greatly promote the further development of designing and synthesizing high performance energy conversion and storage devices.

Keywords: electrodeposition, interface, supercapacitor, metal-organic framework (MOF), layered double hydroxides (LDHs)

References(50)

1

Chen, W. Y.; Wei, T. T.; Mo, L. E.; Wu, S. G.; Li, Z. Q.; Chen, S. H.; Zhang, X. X.; Hu, L. H. CoS2 nanosheets on carbon cloth for flexible all-solid-state supercapacitors. Chem. Eng. J. 2020, 400, 125856.

2

Yang, W. H.; Guo, H.; Yue, L. G.; Li, Q.; Xu, M. N.; Zhang, L. W.; Fan, T.; Yang, W. Metal-organic frameworks derived MMoSx (M = Ni, Co and Ni/Co) composites as electrode materials for supercapacitor. J. Alloys Compd. 2020, 834, 154118.

3

Han, X. R.; Chen, Q.; Zhang, H.; Ni, Y. H.; Zhang, L. Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem. Eng. J. 2019, 368, 513–524.

4

Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, H. B.; Wang, F.; Zhang, J. Highly efficient electrocatalysts for overall water splitting: Mesoporous CoS/MoS2 with hetero-interfaces. Chem. Commun. (Camb.) 2021, 57, 4847–4850.

5

Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, X. X.; Wang, H. H.; Wang, H. The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater. Chem. Front. 2021, 5, 3593–3613.

6

González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sust. Energy Rev. 2016, 58, 1189–1206.

7

Lv, Z. S.; Tang, Y. F.; Tang, Y. X.; Wei, J. Q.; Zhou, X. R.; Li, W. L.; Zeng, Y.; Zhang, W.; Zhang, Y. Y.; Qi, D. P. et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv. Mater. 2018, 30, 1704531.

8

Ran, F. T.; Yang, X. B.; Xu, X. Q.; Li, S. W.; Liu, Y. Y.; Shao, L. Green activation of sustainable resources to synthesize nitrogen-doped oxygen-riched porous carbon nanosheets towards high-performance supercapacitor. Chem. Eng. J. 2021, 412, 128673.

9

Yu, F.; Pang, L.; Wang, H. X. Preparation of mulberry-like RuO2 electrode material for supercapacitors. Rare Met. 2020, 40, 440–447.

10

Liang, X. T.; Chen, K. F.; Xue, D. F. A flexible and ultrahigh energy density capacitor via enhancing surface/interface of carbon cloth supported colloids. Adv. Energy Mater. 2018, 8, 1703329.

11

Liu, P. B.; Yan, J.; Guang, Z. X.; Huang, Y.; Li, X. F.; Huang, W. H. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 2019, 424, 108–130.

12

Pothu, R.; Bolagam, R.; Wang, Q. H.; Ni, W.; Cai, J. F.; Peng, X. X.; Feng, Y. Z.; Ma, J. M. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 2020, 40, 353–373.

13

Liu, L.; Yan, Y.; Cai, Z. H.; Lin, S. X.; Hu, X. B. Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548.

14

Du, Y. Q.; Li, G. Y.; Chen, M. D.; Yang, X. H.; Ye, L.; Liu, X.; Zhao, L. J. Hollow nickel-cobalt-manganese hydroxide polyhedra via MOF templates for high-performance quasi-solid-state supercapacitor. Chem. Eng. J. 2019, 378, 122210.

15

Guo, D. X.; Song, X. M.; Tan, L. C.; Ma, H. Y.; Sun, W. F.; Pang, H. J.; Zhang, L. L.; Wang, X. M. A facile dissolved and reassembled strategy towards sandwich-like rGO@NiCoAl-LDHs with excellent supercapacitor performance. Chem. Eng. J. 2019, 356, 955–963.

16

Li, Q. H.; Lu, W.; Li, Z. P.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Hierarchical MoS2/NiCo2S4@C urchin-like hollow microspheres for asymmetric supercapacitors. Chem. Eng. J. 2020, 380, 122544.

17

Lu, W.; Yang, M.; Jiang, X.; Yu, Y.; Liu, X. C.; Xing, Y. Template-assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors. Chem. Eng. J. 2020, 382, 122943.

18

Mc Manus, J. B.; Ilhan, C.; Balsamo, B.; Downing, C.; Cullen, C. P.; Stimpel-Lindner, T.; Cunningham, G.; Peters, L.; Jones, L.; Mullarkey, D. et al. Synthesis of tungsten ditelluride thin films and highly crystalline nanobelts from pre-deposited reactants. Tungsten 2020, 2, 321–334.

19

Ojha, M.; Wu, B.; Deepa, M. Cost-effective MIL-53(Cr) metal-organic framework-based supercapacitors encompassing fast-ion (Li+/H+/Na+) conductors. ACS Appl. Energy Mater. 2021, 4, 4729–4743.

20

Jayaramulu, K.; Dubal, D. P.; Nagar, B.; Ranc, V.; Tomanec, O.; Petr, M.; Datta, K. K. R.; Zboril, R.; Gómez-Romero, P.; Fischer, R. A. Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storage. Adv. Mater. 2018, 30, e1705789.

21

Tang, J. J.; Shen, Y. N.; Miao, X. L.; Qin, H.; Song, D. D.; Li, Y. T.; Qu, Y. N.; Yin, Z.; Ren, J. H.; Wang, L. L. et al. Template-directed growth of hierarchically structured MOF-derived LDH cage hybrid arrays for supercapacitor electrode. J. Electroanal. Chem. 2019, 840, 174–181.

22

Zheng, W. W.; Sun, S. G.; Xu, Y. Q.; Yu, R. J.; Li, H. J. Sulfidation of hierarchical NiAl-LDH/Ni-MOF composite for high-performance supercapacitor. ChemElectroChem 2019, 6, 3375–3382.

23

Chu, D. W.; Li, F. B.; Song, X. M.; Ma, H. Y.; Tan, L. C.; Pang, H. J.; Wang, X. M.; Guo, D. X.; Xiao, B. X. A novel dual-tasking hollow cube NiFe2O4-NiCo-LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J. Colloid Interface Sci. 2020, 568, 130–138.

24

Han, B.; Cheng, G.; Zhang, E. Y.; Zhang, L. J.; Wang, X. K. Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core–shell composite for high performance supercapacitors. Electrochim. Acta 2018, 263, 391–399.

25

Yu, J. F.; Wang, Q.; O’Hare, D.; Sun, L. Y. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974.

26

Lei, W.; Xiao, J. L.; Liu, H. P.; Jia, Q. L.; Zhang, H. J. Tungsten disulfide: Synthesis and applications in electrochemical energy storage and conversion. Tungsten 2020, 2, 217–239.

27

Wang, L. H.; Jia, D. D.; Yue, L. J.; Zheng, K.; Zhang, A. T.; Jia, Q.; Liu, J. Q. In situ fabrication of a uniform Co-MOF shell coordinated with CoNiO2 to enhance the energy storage capability of NiCo-LDH via vapor-phase growth. ACS Appl. Mater. Interfaces 2020, 12, 47526–47538.

28

Liu, X.; Ye, L.; Du, Y. Q.; Zhao, L. J. Metal organic framework derived core–shell hollow CoSx@NiCo-LDH as advanced electrode for high-performance supercapacitor. Mater. Lett. 2020, 258, 126812.

29

Zhu, Y. L.; Du, W.; Zhang, Q. L.; Yang, H.; Zong, Q.; Wang, Q. Q.; Zhou, Z.; Zhan, J. H. A metal-organic framework template derived hierarchical Mo-doped LDHs@MOF-Se core–shell array electrode for supercapacitors. Chem. Commun. (Camb) 2020, 56, 13848–13851.

30

Zhang, Y. N.; Zhang, Y.; Li, L.; Chen, J. L.; Li, P. Z.; Huang, W. H. One-step in situ growth of high-density POMOFs films on carbon cloth for the electrochemical detection of bromate. J. Electroanal. Chem. 2020, 861, 113939.

31

Ramachandran, R.; Lan, Y. C.; Xu, Z. X.; Wang, F. Construction of NiCo-layered double hydroxide microspheres from Ni-MOFs for high-performance asymmetric supercapacitors. ACS Appl. Energy Mater. 2020, 3, 6633–6643.

32

Min, X. B.; Li, X. Y.; Zhao, J.; Hu, X. X.; Yang, W. C. Heterostructured TiO2@HKUST-1 for the enhanced removal of methylene blue by integrated adsorption and photocatalytic degradation. Environ. Technol. 2020, 42, 4134–4144.

33

Mehraj, O.; Sofi, F. A.; Moosvi, S. K.; Naqash, W.; Majid, K. Synthesis of novel silver chromate incorporated copper-metal-organic framework composites with exceptionally high photocatalytic activity and stability. J. Mater. Sci. Mater. Electr. 2018, 29, 3358–3369.

34

Wang, S. H.; Zhu, J. Y.; Zhang, S. S.; Zhang, X. W.; Ge, F.; Xu, Y. The catalytic degradation of nitrobenzene by the Cu-Co-Fe-LDH through activated oxygen under ambient conditions. Dalton Trans. 2020, 49, 3999–4011.

35

Kumar, L.; Boruah, P. K.; Borthakur, S.; Saikia, L.; Das, M. R.; Deka, S. CuCo-layered double hydroxide nanosheet-based polyhedrons for flexible supercapacitor cells. ACS Appl. Nano Mater. 2021, 4, 5250–5262.

36

Li, Z. X.; Zhang, X.; Kang, Y. K.; Yu, C. C.; Wen, Y. Y.; Hu, M. L.; Meng, D.; Song, W. Y.; Yang, Y. Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv. Sci. (Weinh) 2021, 8, 2002631.

37

Zhang, A. M.; Zhang, M.; Lan, D.; Wang, H. N.; Tang, Y. J.; Wang, X. L.; Dong, L. Z.; Zhang, L.; Li, S. L.; Lan, Y. Q. Polyoxometalate-based metal-organic framework on carbon cloth with a hot-pressing method for high-performance lithium-ion batteries. Inorg. Chem. 2018, 57, 11726–11731.

38

Tian, Z. W.; Liu, Q.; Bian, B. Enhanced catalytic performance of Co methanation over VOx assisted Ni/MCF catalyst. Sustain. Energy Fuels 2020, 4, 2396–2403.

39

Yu, Y. W.; Wang, H. M.; Zhang, H. Z.; Tan, Y. R.; Wang, Y. L.; Song, K. F.; Yang, B. Q.; Yuan, L. F.; Shen, X. D.; Hu, X. L. Blanket-like Co(OH)2/CoOOH/Co3O4/Cu(OH)2 composites on Cu foam for hybrid supercapacitor. Electrochim. Acta 2020, 334, 135559.

40

Bahaa, A.; Balamurugan, J.; Kim, N. H.; Lee, J. H. Metal-organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8620–8632.

41

Li, T.; Li, G. H.; Li, L. H.; Liu, L.; Xu, Y.; Ding, H. Y.; Zhang, T. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 2562–2572.

42

Xiong, G. P.; He, P. G.; Wang, D. N.; Zhang, Q. Q.; Chen, T. F.; Fisher, T. S. Hierarchical Ni-Co hydroxide petals on mechanically robust graphene petal foam for high-energy asymmetric supercapacitors. Adv. Funct. Mater. 2016, 26, 5460–5470.

43

Yang, Q. H.; Li, Z. H.; Zhang, R. K.; Zhou, L.; Shao, M. F.; Wei, M. Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy 2017, 41, 408–416.

44

Qi, K.; Hou, R. Z.; Zaman, S.; Qiu, Y. B.; Xia, B. Y.; Duan, H. W. Construction of metal-organic framework/conductive polymer hybrid for all-solid-state fabric supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 18021–18028.

45

Yan, L.; Wang, H. Y.; Shen, J. L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Formation of mesoporous Co/Cos/metal-N-C@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. Chem. Eng. J. 2021, 403, 126385.

46

Du, L. L.; Du, W. M.; Ren, H. L.; Wang, N.; Yao, Z. J.; Shi, X. S.; Zhang, B.; Zai, J. T.; Qian, X. F. Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. J. Mater. Chem. A 2017, 5, 22527–22535.

47

Yuan, Z.; Wang, H. Y.; Shen, J. L.; Ye, P. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Mater. Chem. A 2020, 8, 22163–22174.

48

Ge, P.; Li, S. J.; Shuai, H. L.; Xu, W.; Tian, Y.; Yang, L.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Engineering 1D chain-like architecture with conducting polymer towards ultra-fast and high-capacity energy storage by reinforced pseudo-capacitance. Nano Energy 2018, 54, 26–38.

49

Nagaraju, G.; Raju, G. S.; Ko, Y. H.; Yu, J. S. Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: A cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 2016, 8, 812–825.

50

Lu, W.; Shen, J. L.; Zhang, P.; Zhong, Y. J.; Hu, Y.; Lou, X. W. D. Construction of CoO/Co-Cu-S hierarchical tubular heterostructures for hybrid supercapacitors. Angew. Chem., Int. Ed. 2019, 58, 15441–15447.

File
12274_2022_4545_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2022
Revised: 16 May 2022
Accepted: 16 May 2022
Published: 11 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22001156), the Youth Talent Fund of University Association for Science and Technology in Shaanxi, China (No. 20210602), and Science Foundation of Science and Technology Department of Shaanxi Province (No. 2021JQ-533).

Return