Journal Home > Volume 15 , Issue 10

High-intensity focused ultrasound (HIFU), with inherent advantages of improved ultrasonic depth and low off-target damage, holds the promising capability for glioma treatment, but the relatively long therapeutic time and potential physical complications may hamper its clinical application. Herein, a bovine serum albumin (BSA)-based nanoplatform with in situ growth of MnO2 was synthesized, and Protoporphyrin IX (PpIX) was further anchored to obtain a versatile PpIX@MnO2@BSA nanoplatform (denoted as BMP). By employing HIFU as the exogenous irradiation source, a high-efficacy sonodynamic therapy (SDT) is developed, in which the excited BMP enables the production of tumoricidal reactive oxygen species (ROS). The inherent tumor microenvironment (TME)-responsive property of MnO2 endows BMP with specific T1-weighted magnetic resonance imaging (MRI) by releasing Mn2+, and the simultaneously generated O2 facilitates hypoxia alleviation as well as 1O2 generation. Compared with HIFU therapy alone, suppression of glioma growth and improved survival benefits are achieved through the designed TME-responsive nanocomposite under HIFU exposure. The high-efficacy SDT strategy combining BMP and HIFU demonstrated favorable TME-responsive T1-weighted MRI, hypoxic environment alleviation, and anti-tumor capability, providing a perspective paradigm for MRI-guided glioma treatment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Versatile nanocomposite augments high-intensity focused ultrasound for high-efficacy sonodynamic therapy of glioma

Show Author's information Yingyan Zheng1,2,§Dejun She1,2,§Huihui Huang5,§Lin Lin2Sunhui Chen3Yiping Lu2Li Liu4( )Zhiqing Pang3( )Bo Yin2( )
Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery Ministry of Education, Shanghai 201203, China
Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350108, China

§ Yingyan Zheng, Dejun She, and Huihui Huang contributed equally to this work.

Abstract

High-intensity focused ultrasound (HIFU), with inherent advantages of improved ultrasonic depth and low off-target damage, holds the promising capability for glioma treatment, but the relatively long therapeutic time and potential physical complications may hamper its clinical application. Herein, a bovine serum albumin (BSA)-based nanoplatform with in situ growth of MnO2 was synthesized, and Protoporphyrin IX (PpIX) was further anchored to obtain a versatile PpIX@MnO2@BSA nanoplatform (denoted as BMP). By employing HIFU as the exogenous irradiation source, a high-efficacy sonodynamic therapy (SDT) is developed, in which the excited BMP enables the production of tumoricidal reactive oxygen species (ROS). The inherent tumor microenvironment (TME)-responsive property of MnO2 endows BMP with specific T1-weighted magnetic resonance imaging (MRI) by releasing Mn2+, and the simultaneously generated O2 facilitates hypoxia alleviation as well as 1O2 generation. Compared with HIFU therapy alone, suppression of glioma growth and improved survival benefits are achieved through the designed TME-responsive nanocomposite under HIFU exposure. The high-efficacy SDT strategy combining BMP and HIFU demonstrated favorable TME-responsive T1-weighted MRI, hypoxic environment alleviation, and anti-tumor capability, providing a perspective paradigm for MRI-guided glioma treatment.

Keywords: glioma, sonodynamic therapy, tumor microenvironment, high intensity focused ultrasound, responsive magnetic resonance imaging

References(47)

1

Nabors, L. B.; Portnow, J.; Ahluwalia, M.; Baehring, J.; Brem, H.; Brem, S.; Butowski, N.; Campian, J. L.; Clark, S. W.; Fabiano, A. J. et al. Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2020, 18, 1537–1570.

2

Pace, A.; Dirven, L.; Koekkoek, J. A. F.; Golla, H.; Fleming, J.; Rudà, R.; Marosi, C.; Le Rhun, E.; Grant, R.; Oliver, K. et al. European association for neuro-oncology (EANO) guidelines for palliative care in adults with glioma. Lancet Oncol. 2017, 18, e330–e340.

3

Lapointe, S.; Perry, A.; Butowski, N. A. Primary brain tumours in adults. Lancet 2018, 392, 432–446.

4

Armstrong, T. S.; Dirven, L.; Arons, D.; Bates, A.; Chang, S. M.; Coens, C.; Espinasse, C.; Gilbert, M. R.; Jenkinson, D.; Kluetz, P. et al. Glioma patient-reported outcome assessment in clinical care and research: A response assessment in neuro-oncology collaborative report. Lancet Oncol. 2020, 21, e97–e103.

5

Alkins, R. D.; Mainprize, T. G. High-intensity focused ultrasound ablation therapy of gliomas. Prog. Neurol. Surg. 2018, 32, 39–47.

6

Van Den Bijgaart, R. J. E.; Eikelenboom, D. C.; Hoogenboom, M.; Fütterer, J. J.; Den Brok, M. H.; Adema, G. J. Thermal and mechanical high-intensity focused ultrasound: Perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol. Immunother. 2017, 66, 247–258.

7

Hsiao, Y. H.; Kuo, S. J.; Tsai, H. D.; Chou, M. C.; Yeh, G. P. Clinical application of high-intensity focused ultrasound in cancer therapy. J. Cancer 2016, 7, 225–231.

8

Chen, Y.; Chen, H. R.; Shi, J. L. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv. Healthcare Mater. 2015, 4, 158–165.

9

Zhang, X. M.; Zheng, Y. Y.; Wang, Z. G.; Huang, S.; Chen, Y.; Jiang, W.; Zhang, H.; Ding, M. X.; Li, Q. S.; Xiao, X. Q. et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 2014, 35, 5148–5161.

10

Bilmin, K.; Kujawska, T.; Grieb, P. Sonodynamic therapy for gliomas. Perspectives and prospects of selective sonosensitization of glioma cells. Cells 2019, 8, 1428.

11

Son, S. B.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

12

Liang, S.; Deng, X. R.; Ma, P. A.; Cheng, Z. Y.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater. 2020, 32, 2003214.

13

Lin, X. H.; Song, J. B.; Chen, X. Y.; Yang, H. H. Ultrasound-activated sensitizers and applications. Angew. Chem., Int. Ed. 2020, 59, 14212–14233.

14

Xu, M. M.; Zhou, L. Q.; Zheng, L.; Zhou, Q.; Liu, K.; Mao, Y. H.; Song, S. S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett. 2021, 497, 229–242.

15

Liu, Y. C.; Bai, L. M.; Guo, K. L.; Jia, Y. L.; Zhang, K.; Liu, Q. H.; Wang, P.; Wang, X. B. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics 2019, 9, 5261–5281.

16

Fite, B. Z.; Wang, J.; Ghanouni, P.; Ferrara, K. W. A review of imaging methods to assess ultrasound-mediated ablation. BME Front. 2022, 2022, 9758652.

17

Kuroda, K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J. Magn. Reson. Imaging 2018, 47, 316–331.

18

Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

19

Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev. 2015, 115, 10907–10937.

20

Ding, B. B.; Zheng, P.; Ma, P. A.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823.

21

Cai, X. X.; Zhu, Q. X.; Zeng, Y.; Zeng, Q.; Chen, X. L.; Zhan, Y. H. Manganese oxide nanoparticles as mri contrast agents in tumor multimodal imaging and therapy. Int. J. Nanomedicine 2019, 14, 8321–8344.

22

Chen, Z. W.; Jiao, Z.; Pan, D. Y.; Li, Z.; Wu, M. H.; Shek, C. H.; Wu, C. M. L.; Lai, J. K. L. Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure. Chem. Rev. 2012, 112, 3833–3855.

23

Li, Y.; Zhao, X.; Liu, X. L.; Cheng, K. M.; Han, X. X.; Zhang, Y. L.; Min, H.; Liu, G. N.; Xu, J. C.; Shi, J. et al. A bioinspired nanoprobe with multilevel responsive T1-weighted MR signal-amplification illuminates ultrasmall metastases. Adv. Mater. 2020, 32, 1906799.

24

Ji, T. J.; Zhao, Y.; Ding, Y. P.; Nie, G. J. Using functional nanomaterials to target and regulate the tumor microenvironment: Diagnostic and therapeutic applications. Adv. Mater. 2013, 25, 3508–3525.

25

Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017, 387, 61–68.

26

Fu, C. P.; Duan, X. H.; Cao, M. H.; Jiang, S. Q.; Ban, X. H.; Guo, N.; Zhang, F.; Mao, J. J.; Huyan, T.; Shen, J. et al. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv. Healthcare Mater. 2019, 8, 1900047.

27

Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 2018, 12, 3780–3795.

28

Xu, Q. B.; Zhan, G. T.; Zhang, Z. L.; Yong, T. Y.; Yang, X. L.; Gan, L. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics 2021, 11, 1937–1952.

29

Cui, X. W.; Han, X. X.; Yu, L. D.; Zhang, B.; Chen, Y. Intrinsic chemistry and design principle of ultrasound-responsive nanomedicine. Nano Today 2019, 28, 100773.

30

Li, Z.; Tan, S. R.; Li, S.; Shen, Q.; Wang, K. H. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol. Rep. 2017, 38, 611–624.

31

Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res. 2018, 137, 115–170.

32

Patel, S.; Ashwanikumar, N.; Robinson, E.; DuRoss, A.; Sun, C.; Murphy-Benenato, K. E.; Mihai, C.; Almarsson, Ö.; Sahay, G. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 2017, 17, 5711–5718.

33

Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183.

34

Chen, J. W.; Chen, Q.; Liang, C.; Yang, Z. J.; Zhang, L.; Yi, X.; Dong, Z. L.; Chao, Y.; Chen, Y. G.; Liu, Z. Albumin-templated biomineralizing growth of composite nanoparticles as smart nano-theranostics for enhanced radiotherapy of tumors. Nanoscale 2017, 9, 14826–14835.

35

Chen, Q.; Liu, Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016, 28, 10557–10566.

36

Chen, B.; He, X. Y.; Yi, X. Q.; Zhuo, R. X.; Cheng, S. X. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 15148–15153.

37

Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

38

Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012, 157, 168–182.

39

Lin, T. T.; Zhao, P. F.; Jiang, Y. F.; Tang, Y. S.; Jin, H. Y.; Pan, Z. Z.; He, H. N.; Yang, V. C.; Huang, Y. Z. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 2016, 10, 9999–10012.

40

Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, S.; Chang, J. et al. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 2016, 10, 10245–10257.

41

Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater. 2015, 27, 903–910.

42

Liu, X. Q.; Mohanty, R. P.; Maier, E. Y.; Peng, X. J.; Wulfe, S.; Looney, A. P.; Aung, K. L.; Ghosh, D. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. J. Control. Release 2020, 328, 1–12.

43

An, F. F.; Zhang, X. H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017, 7, 3667–3689.

44

Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

45

Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

46

Rankin, E. B.; Giaccia, A. J. Hypoxic control of metastasis. Science 2016, 352, 175–180.

47

Kumar, V.; Gabrilovich, D. I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 2014, 143, 512–519.

File
12274_2022_4542_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 February 2022
Revised: 15 May 2022
Accepted: 16 May 2022
Published: 29 June 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank Dalong Ni, at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, for manuscript editing. We are also grateful to Minxia Wu, at Fujian Medical University, Fuzhou, China, for her assistance in nanoparticle characterization. This work was financially supported by the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJ Lab, Shanghai Center for Brain-Inspired Technology, and the Youth Program of National Natural Science Foundation of China (No. 81901697).

Return