Journal Home > Volume 15 , Issue 11

Graphene-integrated waveguides (GIWGs) have shown immense potential for applications in next-generation datacom technology due to graphene’s compactness and its functional complementarity with traditional optical waveguides. However, the fabrication techniques of GIWGs lack scalability for commercial applications. Here we discuss the recent developments of GIWGs in two-dimensional optoelectronics by focusing on their properties, wave–matter interaction mechanisms, and fabrication techniques. We highlight representative advances on the advantages and potential applications of GIWGs in telecom networks. Finally, we outline major challenges and development trends to bridge the gap between proof-of-concept demonstrations and practical applications.


menu
Abstract
Full text
Outline
About this article

Graphene-integrated waveguides: Properties, preparation, and applications

Show Author's information Kaili Chang1,§Zenghui Li1,§Yuzong Gu1( )Kaihui Liu2Ke Chen1( )
Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng 475004, China
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China

§ Kaili Chang and Zenghui Li contributed equally to this work.

Abstract

Graphene-integrated waveguides (GIWGs) have shown immense potential for applications in next-generation datacom technology due to graphene’s compactness and its functional complementarity with traditional optical waveguides. However, the fabrication techniques of GIWGs lack scalability for commercial applications. Here we discuss the recent developments of GIWGs in two-dimensional optoelectronics by focusing on their properties, wave–matter interaction mechanisms, and fabrication techniques. We highlight representative advances on the advantages and potential applications of GIWGs in telecom networks. Finally, we outline major challenges and development trends to bridge the gap between proof-of-concept demonstrations and practical applications.

Keywords: two-dimensional materials, graphene, optoelectronics, waveguide, integration process

References(224)

[1]

Kildishev, A. V.; Boltasseva, A.; Shalaev, V. M. Planar photonics with metasurfaces. Science 2013, 339, 1232009.

[2]

Liu, Y. M.; Zhang, X. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett. 2013, 103, 141101.

[3]

Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

[4]

Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150.

[5]

Wang, X. M.; Cheng, Z. Z.; Xu, K.; Tsang, H. K.; Xu, J. B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891.

[6]

Schuler, S.; Muench, J. E.; Ruocco, A.; Balci, O.; Van Thourhout, D.; Sorianello, V.; Romagnoli, M.; Watanabe, K.; Taniguchi, T.; Goykhman, I. et al. High-responsivity graphene photodetectors integrated on silicon microring resonators. Nat. Commun. 2021, 12, 3733.

[7]

Muench, J. E.; Ruocco, A.; Giambra, M. A.; Miseikis, V.; Zhang, D. K.; Wang, J. J.; Watson, H. F. Y.; Park, G. C.; Akhavan, S.; Sorianello, V. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 2019, 19, 7632–7644.

[8]

Goykhman, I.; Sassi, U.; Desiatov, B.; Mazurski, N.; Milana, S.; De Fazio, D.; Eiden, A.; Khurgin, J.; Shappir, J.; Levy, U. et al. On-chip integrated, silicon-graphene plasmonic Schottky photodetector with high responsivity and avalanche photogain. Nano Lett. 2016, 16, 3005–3013.

[9]

Guo, J. S.; Li, J.; Liu, C. Y.; Yin, Y. L.; Wang, W. H.; Ni, Z. H.; Fu, Z. L.; Yu, H.; Xu, Y.; Shi, Y. C. et al. High-performance silicon–graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light:Sci. Appl. 2020, 9, 29.

[10]

Schuler, S.; Schall, D.; Neumaier, D.; Schwarz, B.; Watanabe, K.; Taniguchi, T.; Mueller, T. Graphene photodetector integrated on a photonic crystal defect waveguide. ACS Photonics 2018, 5, 4758–4763.

[11]

Ma, Z. Z.; Kikunaga, K.; Wang, H.; Sun, S.; Amin, R.; Maiti, R.; Tahersima, M. H.; Dalir, H.; Miscuglio, M.; Sorger, V. J. Compact graphene plasmonic slot photodetector on silicon-on-insulator with high responsivity. ACS Photonics 2020, 7, 932–940.

[12]

Ma, P.; Salamin, Y.; Baeuerle, B.; Josten, A.; Heni, W.; Emboras, A.; Leuthold, J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics 2019, 6, 154–161.

[13]

Avouris, P.; Dimitrakopoulos, C. Graphene: Synthesis and applications. Mater. Today 2012, 15, 86–97.

[14]

Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64–67.

[15]
AgarwalH.TerrésB.OrsiniL.MontanaroA.SorianelloV.PantouvakiM.WatanabeK.TaniguchiT.Van ThourhoutD.RomagnoliM. 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulatorsNat. Commun.202112107010.1038/s41467-021-20926-w

Agarwal, H.; Terrés, B.; Orsini, L.; Montanaro, A.; Sorianello, V.; Pantouvaki, M.; Watanabe, K.; Taniguchi, T.; Van Thourhout, D.; Romagnoli, M. et al. 2D-3D integration of hexagonal boron nitride and a high-κ dielectric for ultrafast graphene-based electro-absorption modulators. Nat. Commun. 2021, 12, 1070.

[16]

Marconi, S.; Giambra, M. A.; Montanaro, A.; Mišeikis, V.; Soresi, S.; Tirelli, S.; Galli, P.; Buchali, F.; Templ, W.; Coletti, C. et al. Photo thermal effect graphene detector featuring 105 Gbit·s−1 NRZ and 120 Gbit·s−1 pam4 direct detection. Nat. Commun. 2021, 12, 806.

[17]

Nagashio, K.; Nishimura, T.; Kita, K.; Toriumi, A. Mobility variations in mono- and multi-layer graphene films. Appl. Phys. Express 2009, 2, 025003.

[18]

Cheng, J. L.; Vermeulen, N.; Sipe, J. E. Third order optical nonlinearity of graphene. New J. Phys. 2014, 16, 053014.

[19]

Liu, K.; Zhang, J. F.; Xu, W.; Zhu, Z. H.; Guo, C. C.; Li, X. J.; Qin, S. Q. Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide. Sci. Rep. 2015, 5, 16734.

[20]

Ishizawa, A.; Kou, R.; Goto, T.; Tsuchizawa, T.; Matsuda, N.; Hitachi, K.; Nishikawa, T.; Yamada, K.; Sogawa, T.; Gotoh, H. Optical nonlinearity enhancement with graphene-decorated silicon waveguides. Sci. Rep. 2017, 7, 45520.

[21]

Hu, X.; Long, Y.; Ji, M. X.; Wang, A. D.; Zhu, L.; Ruan, Z. S.; Wang, Y.; Wang, J. Graphene-silicon microring resonator enhanced all-optical up and down wavelength conversion of QPSK signal. Opt. Express 2016, 24, 7168–7177.

[22]

Yao, B. C.; Liu, Y.; Huang, S. W.; Choi, C.; Xie, Z. D.; Flores, J. F.; Wu, Y.; Yu, M. B.; Kwong, D. L.; Huang, Y. et al. Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat. Photonics 2018, 12, 22–28.

[23]

Gu, T.; Petrone, N.; McMillan, J. F.; Van Der Zande, A.; Yu, M.; Lo, G. Q.; Kwong, D. L.; Hone, J.; Wong, C. W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 2012, 6, 554–559.

[24]

Zhang, Y. N.; Wu, J. Y.; Yang, Y. Y.; Qu, Y.; Jia, L. N.; Moein, T.; Jia, B. H.; Moss, D. J. Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films. ACS Appl. Mater. Interfaces 2020, 12, 33094–33103.

[25]

Zapata, J. D.; Steinberg, D.; Saito, L. A. M.; De Oliveira, R. E. P.; Cárdenas, A. M.; De Souza, E. A. T. Efficient graphene saturable absorbers on D-shaped optical fiber for ultrashort pulse generation. Sci. Rep. 2016, 6, 20644.

[26]

Deng, M.; Liao, Z. C.; Chen, Y. K.; Yang, N. N.; Yan, X.; Zhang, C.; Dai, N. L.; Wang, Y. On-chip ultrafast pulse generation based on graphene–silicon hybrid waveguides. Photonics Res. 2021, 9, 1660–1666.

[27]

Hua, K.; Wang, D. N. Coupling scheme for graphene saturable absorber in a linear cavity mode-locked fiber laser. Opt. Lett. 2021, 46, 4362–4365.

[28]

Lin, Y. H.; Yang, C. Y.; Liou, J. H.; Yu, C. P.; Lin, G. R. Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser. Opt. Express 2013, 21, 16763–16776.

[29]

Bao, Q. L.; Zhang, H.; Ni, Z. H.; Wang, Y.; Polavarapu, L.; Shen, Z. X.; Xu, Q. H.; Tang, D. Y.; Loh, K. P. Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Res. 2011, 4, 297–307.

[30]

Chen, T.; Chen, H. F.; Wang, D. N. Graphene saturable absorber based on slightly tapered fiber with inner air-cavity. J. Lightwave Technol. 2015, 33, 2332–2336.

[31]

Ren, W. C.; Cheng, H. M. The global growth of graphene. Nat. Nanotechnol. 2014, 9, 726–730.

[32]

Hofer, C.; Skákalová, V.; Görlich, T.; Tripathi, M.; Mittelberger, A.; Mangler, C.; Monazam, M. R. A.; Susi, T.; Kotakoski, J.; Meyer, J. C. Direct imaging of light-element impurities in graphene reveals triple-coordinated oxygen. Nat. Commun. 2019, 10, 4570.

[33]

Bo, Z.; Shuai, X. R.; Mao, S.; Yang, H. C.; Qian, J. J.; Chen, J. H.; Yan, J. H.; Cen, K. F. Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci. Rep. 2014, 4, 4684.

[34]

Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

[35]

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

[36]

Xu, X. Z.; Zhang, Z. H.; Dong, J. C.; Yi, D.; Niu, J. J.; Wu, M. H.; Lin, L.; Yin, R. K.; Li, M. Q.; Zhou, J. Y. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 2017, 62, 1074–1080.

[37]

Wang, J. Q.; Cheng, Z. Z.; Li, X. J. Progress on waveguide-integrated graphene optoelectronics. Adv. Condens. Matter Phys. 2018, 2018, 9324528.

[38]

Meng, Y.; Chen, Y. Z.; Lu, L. H.; Ding, Y. M.; Cusano, A.; Fan, J. A.; Hu, Q. M.; Wang, K. Y.; Xie, Z. W.; Liu, Z. T. et al. Optical meta-waveguides for integrated photonics and beyond. Light:Sci. Appl. 2021, 10, 235.

[39]

Kumar, V. Linear and nonlinear optical properties of graphene: A review. J. Electron. Mater. 2021, 50, 3773–3799.

[40]

Wang, J.; Hu, X. Recent advances in graphene-assisted nonlinear optical signal processing. J. Nanotechnol. 2016, 2016, 7031913.

[41]

Xu, X. D.; Gabor, N. M.; Alden, J. S.; Van Der Zande, A. M.; McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 2010, 10, 562–566.

[42]

Gabor, N. M.; Song, J. C. W.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Hot carrier-assisted intrinsic photoresponse in graphene. Science 2011, 334, 648–652.

[43]

Wei, P.; Bao, W. Z.; Pu, Y.; Lau, C. N.; Shi, J. Anomalous thermoelectric transport of Dirac particles in graphene. Phys. Rev. Lett. 2009, 102, 166808.

[44]

Cutler, M.; Mott, N. F. Observation of Anderson localization in an electron gas. Phys. Rev. 1969, 181, 1336–1340.

[45]

Liu, Z. B.; Zhang, X. L.; Yan, X. Q.; Chen, Y. S.; Tian, J. G. Nonlinear optical properties of graphene-based materials. Chin. Sci. Bull. 2012, 57, 2971–2982.

[46]

Dremetsika, E.; Dlubak, B.; Gorza, S. P.; Ciret, C.; Martin, M. B.; Hofmann, S.; Seneor, P.; Dolfi, D.; Massar, S.; Emplit, P. et al. Measuring the nonlinear refractive index of graphene using the optical Kerr effect method. Opt. Lett. 2016, 41, 3281–3284.

[47]

Bao, Q. L.; Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694.

[48]

Hong, S. Y.; Dadap, J. I.; Petrone, N.; Yeh, P. C.; Hone, J.; Osgood, R. M. Optical third-harmonic generation in graphene. Phys. Rev. X 2013, 3, 021014.

[49]
KumarN.KumarJ.GerstenkornC.WangR.ChiuH. Y.SmirlA. L.ZhaoH. Third harmonic generation in graphene and few-layer graphite filmsPhys. Rev. B201387121406(R)10.1103/PhysRevB.87.121406

Kumar, N.; Kumar, J.; Gerstenkorn, C.; Wang, R.; Chiu, H. Y.; Smirl, A. L.; Zhao, H. Third harmonic generation in graphene and few-layer graphite films. Phys. Rev. B 2013, 87, 121406(R).

[50]

Säynätjoki, A.; Karvonen, L.; Riikonen, J.; Kim, W.; Mehravar, S.; Norwood, R. A.; Peyghambarian, N.; Lipsanen, H.; Kieu, K. Rapid large-area multiphoton microscopy for characterization of graphene. ACS Nano 2013, 7, 8441–8446.

[51]

Luo, Z. Q.; Zhou, M.; Wu, D. D.; Ye, C. C.; Weng, J.; Dong, J.; Xu, H. Y.; Cai, Z. P.; Chen, L. J. Graphene-induced nonlinear four-wave-mixing and its application to multiwavelength Q-switched rare-earth-doped fiber lasers. J. Lightwave Technol. 2011, 29, 2732–2739.

[52]

Yang, H. Z.; Feng, X. B.; Wang, Q.; Huang, H.; Chen, W.; Wee, A. T. S.; Ji, W. Giant two-photon absorption in bilayer graphene. Nano Lett. 2011, 11, 2622–2627.

[53]

Li, H.; Anugrah, Y.; Koester, S. J.; Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 2012, 101, 111110.

[54]

Ono, M.; Hata, M.; Tsunekawa, M.; Nozaki, K.; Sumikura, H.; Chiba, H.; Notomi, M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nat. Photonics 2020, 14, 37–43.

[55]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[56]

Song, Y. X.; Zhang, C. R.; Li, B.; Ding, G. Q.; Jiang, D.; Wang, H. M.; Xie, X. M. Van der Waals epitaxy and characterization of hexagonal boron nitride nanosheets on graphene. Nanoscale Res. Lett. 2014, 9, 367.

[57]

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

[58]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[59]

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

[60]

Kim, K.; Yoon, J. C.; Kim, J.; Kim, J. H.; Lee, S. W.; Yoon, A.; Lee, Z. Dedicated preparation for in situ transmission electron microscope tensile testing of exfoliated graphene. Appl. Microsc. 2019, 49, 3.

[61]

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

[62]

Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887.

[63]

Schuler, S.; Schall, D.; Neumaier, D.; Dobusch, L.; Bethge, O.; Schwarz, B.; Krall, M.; Mueller, T. Controlled generation of a p–n junction in a waveguide integrated graphene photodetector. Nano Lett. 2016, 16, 7107–7112.

[64]

Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892–896.

[65]

Li, W.; Chen, B. G.; Meng, C.; Fang, W.; Xiao, Y.; Li, X. Y.; Hu, Z. F.; Xu, Y. X.; Tong, L. M.; Wang, H. Q. et al. Ultrafast all-optical graphene modulator. Nano Lett. 2014, 14, 955–959.

[66]

Chen, B. G.; Meng, C.; Yang, Z. Y.; Li, W.; Lin, S. S.; Gu, T. Y.; Guo, X.; Wang, D. L.; Yu, S. L.; Wong, C. W. et al. Graphene coated ZnO nanowire optical waveguides. Opt. Express 2014, 22, 24276–24285.

[67]

Kaur, A.; Kaur, J.; Singh, R. C. Green exfoliation of graphene nanosheets based on freezing induced volumetric expansion of carbonated water. Mater. Res. Express 2018, 5, 085601.

[68]

Yi, M.; Shen, Z. G. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715.

[69]

Wei, Y.; Sun, Z. Y. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr. Opin. Colloid Interface Sci. 2015, 20, 311–321.

[70]

Tian, Z. S.; Xu, C. X.; Li, J. T.; Zhu, G. Y.; Wu, J.; Shi, Z. L.; Wang, Y. Y. A facile preparation route for highly conductive borate cross-linked reduced graphene oxide paper. New J. Chem. 2015, 39, 6907–6913.

[71]

Abdolhosseinzadeh, S.; Asgharzadeh, H.; Kim, H. S. Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 2015, 5, 10160.

[72]

Paton, K. R.; Varrla, E.; Backes, C.; Smith, R. J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O. M.; King, P. et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630.

[73]

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

[74]

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

[75]

Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

[76]

Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 2010, 22, 4467–4472.

[77]

Cote, L. J.; Kim, F.; Huang, J. X. Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 2009, 131, 1043–1049.

[78]

Lu, J. L.; Li, Y. H.; Li, S. L.; Jiang, S. P. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells. Sci. Rep. 2016, 6, 21530.

[79]

Wu, J. Y.; Yang, Y. Y.; Qu, Y.; Xu, X. Y.; Liang, Y.; Chu, S. T.; Little, B. E.; Morandotti, R.; Jia, B. H.; Moss, D. J. Graphene oxide waveguide and micro-ring resonator polarizers. Laser Photonics Rev. 2019, 13, 1900056.

[80]

Kim, H.; Cho, J.; Jang, S. Y.; Song, Y. W. Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers. Appl. Phys. Lett. 2011, 98, 021104.

[81]

Song, Y. W.; Jang, S. Y.; Han, W. S.; Bae, M. K. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl. Phys. Lett. 2010, 96, 051122.

[82]

Yao, B. C.; Yu, C. B.; Wu, Y.; Huang, S. W.; Wu, H.; Gong, Y.; Chen, Y. F.; Li, Y. R.; Wong, C. W.; Fan, X. D. et al. Graphene-enhanced brillouin optomechanical microresonator for ultrasensitive gas detection. Nano Lett. 2017, 17, 4996–5002.

[83]

Choi, S. Y.; Cho, D. K.; Song, Y. W.; Oh, K.; Kim, K.; Rotermund, F.; Yeom, D. I. Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking. Opt. Express 2012, 20, 5652–5657.

[84]

Liu, Z. B.; He, X. Y.; Wang, D. N. Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution. Opt. Lett. 2011, 36, 3024–3026.

[85]

Ruan, Y. L.; Ding, L. Y.; Duan, J. J.; Ebendorff-Heidepriem, H.; Monro, T. M. Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications. Sci. Rep. 2016, 6, 21682.

[86]

Meng, C.; Yu, S. L.; Wang, H. Q.; Cao, Y.; Tong, L. M.; Liu, W. T.; Shen, Y. R. Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light:Sci. Appl. 2015, 4, e348.

[87]

Sun, Z. P.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F. Q.; Bonaccorso, F.; Basko, D. M.; Ferrari, A. C. Graphene mode-locked ultrafast laser. ACS Nano 2010, 4, 803–810.

[88]

Guo, Y. Y.; Han, B.; Du, J. T.; Cao, S. S.; Gao, H.; An, N.; Li, Y. W.; An, S. J.; Ran, Z. L.; Lin, Y. et al. Kilometers long graphene-coated optical fibers for fast thermal sensing. Research 2021, 2021, 5612850.

[89]

Yu, Q.; Jiang, J. C.; Jiang, L. Y.; Yang, Q. Q.; Yan, N. Advances in green synthesis and applications of graphene. Nano Res. 2021, 14, 3724–3743.

[90]

Deng, B.; Liu, Z. F.; Peng, H. L. Toward mass production of CVD graphene films. Adv. Mater. 2019, 31, 1800996.

[91]

Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z. P.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564–589.

[92]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[93]

Jabra, Z. B.; Berbezier, I.; Michon, A.; Koudia, M.; Assaf, E.; Ronda, A.; Castrucci, P.; De Crescenzi, M.; Vach, H.; Abel, M. Hydrogen-mediated CVD epitaxy of graphene on SiC: Implications for microelectronic applications. ACS Appl. Nano Mater. 2021, 4, 4462–4473.

[94]

Peng, K. J.; Lin, Y. H.; Wu, C. L.; Lin, S. F.; Yang, C. Y.; Lin, S. M.; Tsai, D. P.; Lin, G. R. Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers. Sci. Rep. 2015, 5, 13689.

[95]

Verguts, K.; Vermeulen, B.; Vrancken, N.; Schouteden, K.; Van Haesendonck, C.; Huyghebaert, C.; Heyns, M.; De Gendt, S.; Brems, S. Epitaxial Al2O3 (0001)/Cu (111) template development for CVD graphene growth. J. Phys. Chem. C 2016, 120, 297–304.

[96]

Leidinger, P.; Kraus, J.; Günther, S. Predicting graphene growth on Cu: Universal kinetic growth model and its experimental verification. ACS Nano 2021, 15, 12201–12212.

[97]

Huang, M.; Biswal, M.; Park, H. J.; Jin, S.; Qu, D. S.; Hong, S.; Zhu, Z. L.; Qiu, L.; Luo, D.; Liu, X. C. et al. Highly oriented monolayer graphene grown on a Cu/Ni (111) alloy foil. ACS Nano 2018, 12, 6117–6127.

[98]

Zhou, H. L.; Yu, W. J.; Liu, L. X.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

[99]

Shin, D.; Park, J. B.; Kim, Y. J.; Kim, S. J.; Kang, J. H.; Lee, B.; Cho, S. P.; Hong, B. H.; Novoselov, K. S. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat. Commun. 2015, 6, 6068.

[100]

Bao, Q. L.; Zhang, H.; Wang, Y.; Ni, Z. H.; Yan, Y. L.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083.

[101]

Deng, B.; Hsu, P. C.; Chen, G. C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J. X.; Guo, Y. F.; Lin, L.; Zhou, Y. et al. Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett. 2015, 15, 4206–4213.

[102]

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

[103]

Liu, M.; Yin, X. B.; Zhang, X. Double-layer graphene optical modulator. Nano Lett. 2012, 12, 1482–1485.

[104]

Qiu, C. Y.; Gao, W. L.; Vajtai, R.; Ajayan, P. M.; Kono, J.; Xu, Q. F. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett. 2014, 14, 6811–6815.

[105]

Phare, C. T.; Lee, Y. H. D.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514.

[106]

Lin, H. T.; Song, Y.; Huang, Y. Z.; Kita, D.; Deckoff-Jones, S.; Wang, K. Q.; Li, L.; Li, J. Y.; Zheng, H. Y.; Luo, Z. Q. et al. Chalcogenide glass-on-graphene photonics. Nat. Photonics 2017, 11, 798–805.

[107]

Bao, Q. L.; Zhang, H.; Wang, B.; Ni, Z. H.; Lim, C. H. Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P. Broadband graphene polarizer. Nat. Photonics 2011, 5, 411–415.

[108]

He, X. Y.; Liu, Z. B.; Wang, D. N. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating. Opt. Lett. 2012, 37, 2394–2396.

[109]

Lee, E. J.; Choi, S. Y.; Jeong, H.; Park, N. H.; Yim, W.; Kim, M. H.; Park, J. K.; Son, S.; Bae, S.; Kim, S. J. et al. Active control of all-fibre graphene devices with electrical gating. Nat. Commun. 2015, 6, 6851.

[110]

Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190–194.

[111]

Chen, K.; Zhou, X.; Cheng, X.; Qiao, R. X.; Cheng, Y.; Liu, C.; Xie, Y. D.; Yu, W. T.; Yao, F. R.; Sun, Z. P. et al. Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat. Photonics 2019, 13, 754–759.

[112]

Zuo, Y. G.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R. X.; Liang, J.; Zhou, X.; Wang, J. H.; Wu, M. H.; Zhao, Y. et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol 2020, 15, 987–991.

[113]

Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K. E.; Kim, P.; Yoo, I.; Chung, H. J.; Kim, K. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 2012, 336, 1140–1143.

[114]

An, Y. B.; Behnam, A.; Pop, E.; Ural, A. Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 2013, 102, 013110.

[115]

Sipe, J. E.; Becher, J. Surface-plasmon-assisted photoemission. J. Opt. Soc. Am. 1981, 71, 1286–1288.

[116]

Zhang, Y.; Li, X. H.; Peng, C. X. Modification of photoluminescence properties of ZnO island films by localized surface plasmons. Chin. Phys. Lett. 2012, 29, 107803.

[117]

Sobhani, A.; Knight, M. W.; Wang, Y. M.; Zheng, B.; King, N. S.; Brown, L. V.; Fang, Z. Y.; Nordlander, P.; Halas, N. J. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013, 4, 1643.

[118]

Li, H. C.; Cao, Y.; Wang, Z. H.; Feng, X. Flexible and stretchable inorganic optoelectronics. Opt. Mater. Express 2019, 9, 4023–4049.

[119]

Goykhman, I.; Desiatov, B.; Khurgin, J.; Shappir, J.; Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 2011, 11, 2219–2224.

[120]

Hu, F.; Dai, X. Y.; Zhou, Z. Q.; Kong, X. Y.; Sun, S. L.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Sun, J. Black silicon Schottky photodetector in sub-bandgap near-infrared regime. Opt. Express 2019, 27, 3161–3168.

[121]

Goykhman, I.; Desiatov, B.; Khurgin, J.; Shappir, J.; Levy, U. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 2012, 20, 28594–28602.

[122]

Moghaddam, M. K.; Fleury, R. Slow light engineering in resonant photonic crystal line-defect waveguides. Opt. Express 2019, 27, 26229–26238.

[123]

Vlasov, Y. A.; O’Boyle, M.; Hamann, H. F.; McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 2005, 438, 65–69.

[124]

Mekis, A.; Chen, J. C.; Kurland, I.; Fan, S. H.; Villeneuve, P. R.; Joannopoulos, J. D. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 1996, 77, 3787–3790.

[125]

White, T. P.; O’Faolain, L.; Li, J. T.; Andreani, L. C.; Krauss, T. F. Silica-embedded silicon photonic crystal waveguides. Opt. Express 2008, 16, 17076–17081.

[126]

Krauss, T. F. Planar photonic crystal waveguide devices for integrated optics. Phys. Stat. Sol. 2003, 197, 688–702.

[127]

Schall, D.; Porschatis, C.; Otto, M.; Neumaier, D. Graphene photodetectors with a bandwidth   > 76 GHz fabricated in a 6'' wafer process line. J. Phys. D:Appl. Phys. 2017, 50, 124004.

[128]

Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 2011, 11, 4688–4692.

[129]

Lemme, M. C.; Koppens, F. H. L.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 2011, 11, 4134–4137.

[130]

Bogaerts, W.; De Heyn, P.; Van Vaerenbergh, T.; De Vos, K.; Selvaraja, S. K.; Claes, T.; Dumon, P.; Bienstman, P.; Van Thourhout, D.; Baets, R. Silicon microring resonators. Laser Photonics Rev. 2012, 6, 47–73.

[131]

Long, Y.; Wang, J. Optically-controlled extinction ratio and Q-factor tunable silicon microring resonators based on optical forces. Sci. Rep. 2014, 4, 5409.

[132]

Tan, Y.; Chen, S. T.; Dai, D. X. Polarization-selective microring resonators. Opt. Express 2017, 25, 4106–4119.

[133]

Koppens, F. H. L.; Mueller, T.; Avouris, P.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793.

[134]

Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; Van Hulst, N. F. et al. Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. Nat. Nanotechnol. 2015, 10, 437–443.

[135]

Ding, Y. H.; Cheng, Z.; Zhu, X. L.; Yvind, K.; Dong, J. J.; Galili, M.; Hu, H.; Mortensen, N. A.; Xiao, S. S.; Oxenløwe, L. K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics 2020, 9, 317–325.

[136]

Schall, D.; Neumaier, D.; Mohsin, M.; Chmielak, B.; Bolten, J.; Porschatis, C.; Prinzen, A.; Matheisen, C.; Kuebart, W.; Junginger, B. et al. 50 Gbit/s photodetectors based on wafer-scale graphene for integrated silicon photonic communication systems. ACS Photonics 2014, 1, 781–784.

[137]

Shiue, R. J.; Gao, Y. D.; Wang, Y. F.; Peng, C.; Robertson, A. D.; Efetov, D. K.; Assefa, S.; Koppens, F. H. L.; Hone, J.; Englund, D. High-responsivity graphene-boron nitride photodetector and autocorrelator in a silicon photonic integrated circuit. Nano Lett. 2015, 15, 7288–7293.

[138]

Ansell, D.; Radko, I. P.; Han, Z.; Rodriguez, F. J.; Bozhevolnyi, S. I.; Grigorenko, A. N. Hybrid graphene plasmonic waveguide modulators. Nat. Commun. 2015, 6, 8846.

[139]

Cakmakyapan, S.; Lu, P. K.; Navabi, A.; Jarrahi, M. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Sci. Appl. 2018, 7, 20.

[140]

Jadidi, M. M.; Sushkov, A. B.; Myers-Ward, R. L.; Boyd, A. K.; Daniels, K. M.; Gaskill, D. K.; Fuhrer, M. S.; Drew, H. D.; Murphy, T. E. Tunable terahertz hybrid metal-graphene plasmons. Nano Lett. 2015, 15, 7099–7104.

[141]

Degl’Innocenti, R.; Xiao, L.; Kindness, S. J.; Kamboj, V. S.; Wei, B. B.; Braeuninger-Weimer, P.; Nakanishi, K.; Aria, A. I.; Hofmann, S.; Beere, H. E. et al. Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays. J. Phys. D:Appl. Phys. 2017, 50, 174001.

[142]

Tian, J.; Yu, S. Q.; Yan, W.; Qiu, M. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Appl. Phys. Lett. 2009, 95, 013504.

[143]

Nielsen, M. P.; Lafone, L.; Rakovich, A.; Sidiropoulos, T. P. H.; Rahmani, M.; Maier, S. A.; Oulton, R. F. Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett. 2016, 16, 1410–1414.

[144]

Sorger, V. J.; Oulton, R. F.; Yao, J.; Bartal, G.; Zhang, X. Plasmonic Fabry–Pérot nanocavity. Nano Lett. 2009, 9, 3489–3493.

[145]

Oulton, R. F.; Bartal, G.; Pile, D. F. P.; Zhang, X. Confinement and propagation characteristics of subwavelength plasmonic modes. New J. Phys. 2008, 10, 105018.

[146]

Miller, D. A. B. Are optical transistors the logical next step. Nat. Photonics 2010, 4, 3–5.

[147]

Reed, G. T.; Mashanovich, G.; Gardes, F. Y.; Thomson, D. J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526.

[148]

Mak, K. F.; Sfeir, M. Y.; Wu, Y.; Lui, C. H.; Misewich, J. A.; Heinz, T. F. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 2008, 101, 196405.

[149]

Hu, Y. T.; Pantouvaki, M.; Van Campenhout, J.; Brems, S.; Asselberghs, I.; Huyghebaert, C.; Absil, P.; Van Thourhout, D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser Photonics Rev. 2016, 10, 307–316.

[150]

Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410.

[151]

Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics 2016, 3, 1564–1568.

[152]

Liu, J. M.; Khan, Z. U.; Wang, C.; Zhang, H.; Sarjoghian, S. Review of graphene modulators from the low to the high figure of merits. J. Phys. D:Appl. Phys. 2020, 53, 233002.

[153]

Ding, Y. H.; Zhu, X. L.; Xiao, S. S.; Hu, H.; Frandsen, L. H.; Mortensen, N. A.; Yvind, K. Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator. Nano Lett. 2015, 15, 4393–4400.

[154]

Cai, X. L.; Huang, D. X.; Zhang, X. L. Numerical analysis of polarization splitter based on vertically coupled microring resonator. Opt. Express 2006, 14, 11304–11311.

[155]

Gheorma, I. L.; Osgood, R. M. Fundamental limitations of optical resonator based high-speed EO modulators. IEEE Photonics Technol. Lett. 2002, 14, 795–797.

[156]

Du, W.; Li, E. P.; Hao, R. Tunability analysis of a graphene-embedded ring modulator. IEEE Photonics Technol. Lett. 2014, 26, 2008–2011.

[157]

Degl’Innocenti, R.; Jessop, D. S.; Shah, Y. D.; Sibik, J.; Zeitler, J. A.; Kidambi, P. R.; Hofmann, S.; Beere, H. E.; Ritchie, D. A. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano 2014, 8, 2548–2554.

[158]
YuS. L.WuX. Q.WangY. P.GuoX.TongL. M. 2D materials for optical modulation: Challenges and opportunitiesAdv. Mater.201729160612810.1002/adma.201606128

Yu, S. L.; Wu, X. Q.; Wang, Y. P.; Guo, X.; Tong, L. M. 2D materials for optical modulation: Challenges and opportunities. Adv. Mater. 2017, 29, 1606128.

[159]

Mohsin, M.; Neumaier, D.; Schall, D.; Otto, M.; Matheisen, C.; Giesecke, A. L.; Sagade, A. A.; Kurz, H. Experimental verification of electro-refractive phase modulation in graphene. Sci. Rep. 2015, 5, 10967.

[160]

Sorianello, V.; De Angelis, G.; Cassese, T.; Midrio, M.; Romagnoli, M.; Moshin, M.; Otto, M.; Neumaier, D.; Asselberghs, I.; Van Campenhout, J. et al. Complex effective index in graphene-silicon waveguides. Opt. Express 2016, 24, 29984–29993.

[161]

Soldano, L. B.; Pennings, E. C. M. Optical multi-mode interference devices based on self-imaging: Principles and applications. J. Lightwave Technol. 1995, 13, 615–627.

[162]

Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberghs, I.; Van Campenhout, J.; Huyghebaert, C.; Goykhman, I.; Ott, A. K.; Ferrari, A. C.; Romagnoli, M. Graphene-silicon phase modulators with gigahertz bandwidth. Nat. Photonics 2018, 12, 40–44.

[163]

Chen, H. T.; Padilla, W. J.; Cich, M. J.; Azad, A. K.; Averitt, R. D.; Taylor, A. J. A metamaterial solid-state terahertz phase modulator. Nat. Photonics 2009, 3, 148–151.

[164]

Song, B. K.; Liu, F.; Wang, H. N.; Miao, J. S.; Chen, Y. L.; Kumar, P.; Zhang, H. Q.; Liu, X. W.; Gu, H. G.; Stach, E. A. et al. Giant gate-tunability of complex refractive index in semiconducting carbon nanotubes. ACS Photonics 2020, 7, 2896–2905.

[165]

Gemo, E.; Kesava, S. V.; De Galarreta, C. R.; Trimby, L.; Carrillo, S. G. C.; Riede, M.; Baldycheva, A.; Alexeev, A.; Wright, C. D. Simple technique for determining the refractive index of phase-change materials using near-infrared reflectometry. Opt. Mater. Express 2020, 10, 1675–1686.

[166]

Wang, G. Z.; Zhang, S. F.; Umran, F. A.; Cheng, X.; Dong, N. N.; Coghlan, D.; Cheng, Y.; Zhang, L.; Blau, W. J.; Wang, J. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation. Appl. Phys. Lett. 2014, 104, 141909.

[167]

Xiong, C.; Gill, D. M.; Proesel, J. E.; Orcutt, J. S.; Haensch, W.; Green, W. M. J. Monolithic 56   Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica 2016, 3, 1060–1065.

[168]

Yu, H.; Pantouvaki, M.; Van Campenhout, J.; Korn, D.; Komorowska, K.; Dumon, P.; Li, Y. L.; Verheyen, P.; Absil, P.; Alloatti, L. et al. Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt. Express 2012, 20, 12926–12938.

[169]

Wang, J.; Qiu, C.; Li, H.; Ling, W.; Li, L.; Pang, A.; Sheng, Z.; Wu, A. M.; Wang, X.; Zou, S. C. et al. Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. J. Lightwave Technol. 2013, 31, 4119–4125.

[170]

Han, J.; Qi, M.; Wu, H.; Wang, R. D.; Li, D. D.; Jiang, M.; Ren, Z. Y. All-optical modulator based on reduced graphene oxide coated D-shaped fiber waveguide. Appl. Phys. Express 2019, 12, 112002.

[171]

Wang, M. K.; Li, J. H.; Chen, K. X.; Hu, Z. F. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber. Opt. Express 2020, 28, 21464–21473.

[172]

Odoeze, J. A. H.; Hameed, M. F. O.; Shalaby, H. M. H.; Obayya, S. S. A. Si-core photonic crystal fiber transverse-electric pass polarizer. J. Opt. Soc. Am. B 2018, 35, 980–986.

[173]

Feth, J. R.; Chang, C. L. Metal-clad fiber-optic cutoff polarizer. Opt. Lett. 1986, 11, 386–388.

[174]

Dyott, R. B.; Bello, J.; Handerek, V. A. Indium-coated D-shaped-fiber polarizer. Opt. Lett. 1987, 12, 287–289.

[175]

Youngblood, N.; Anugrah, Y.; Ma, R.; Koester, S. J.; Li, M. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. Nano Lett. 2014, 14, 2741–2746.

[176]

Zhou, H.; Gu, T. Y.; McMillan, J. F.; Yu, M. B.; Lo, G. Q.; Kwong, D. L.; Feng, G. Y.; Zhou, S. H.; Wong, C. W. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides. Appl. Phys. Lett. 2016, 108, 111106.

[177]

Karman, G. P.; McDonald, G. S.; New, G. H. C.; Woerdman, J. P. Fractal modes in unstable resonators. Nature 1999, 402, 138.

[178]

Tong, L. M.; Gattass, R. R.; Ashcom, J. B.; He, S. L.; Lou, J. Y.; Shen, M. Y.; Maxwell, I.; Mazur, E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003, 426, 816–819.

[179]

Lim, G. K.; Chen, Z. L.; Clark, J.; Goh, R. G. S.; Ng, W. H.; Tan, H. W.; Friend, R. H.; Ho, P. K. H.; Chua, L. L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nat. Photonics 2011, 5, 554–560.

[180]

Vasko, F. T.; Ryzhii, V. Photoconductivity of intrinsic graphene. Phys. Rev. B 2008, 77, 195433.

[181]

Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838.

[182]

Keller, U.; Weingarten, K. J.; Kartner, F. X.; Kopf, D.; Braun, B.; Jung, I. D.; Fluck, R.; Honninger, C.; Matuschek, N.; Der Au, J. A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453.

[183]

Ding, Y.; Guan, X.; Zhu, X.; Hu, H.; Bozhevolnyi, S. I.; Oxenlowe, L. K.; Jin, K. J.; Mortensen, N. A.; Xiao, S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 2017, 9, 15576–15581.

[184]

Shu, H. W.; Su, Z. T.; Huang, L.; Wu, Z. N.; Wang, X. J.; Zhang, Z. Y.; Zhou, Z. P. Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci. Rep. 2018, 8, 991.

[185]

Cheng, Z.; Zhu, X. L.; Galili, M.; Frandsen, L. H.; Hu, H.; Xiao, S. S.; Dong, J. J.; Ding, Y. H.; Oxenløwe, L. K.; Zhang, X. L. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics 2019, 9, 2377–2385.

[186]

Giambra, M. A.; Sorianello, V.; Miseikis, V.; Marconi, S.; Montanaro, A.; Galli, P.; Pezzini, S.; Coletti, C.; Romagnoli, M. High-speed double layer graphene electro-absorption modulator on SOI waveguide. Opt. Express 2019, 27, 20145–20155.

[187]

Uddin, S.; Kim, S.; Kim, D.; Choi, J.; Song, Y. W. Conformal graphene directly synthesized on a femtosecond laser-scribed in-fiber microstructure for high-energy ultrafast optical pulses. ACS Nano 2021, 15, 20300–20310.

[188]

Cheng, Y.; Yu, W. T.; Xie, J.; Wang, R. Y.; Cui, G.; Cheng, X.; Li, M. W.; Wang, K.; Li, J. L.; Sun, Z. P. et al. Controllable growth of graphene photonic crystal fibers with tunable optical nonlinearity. ACS Photonics 2022, 9, 961–968.

[189]

Dulkeith, E.; Vlasov, Y. A.; Chen, X. G.; Panoiu, N. C.; Osgood, R. M. Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 2006, 14, 5524–5534.

[190]

Suzuki, N. FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides. J. Lightwave Technol. 2007, 25, 2495–2501.

[191]

Huang, P. L.; Lin, S. C.; Yeh, C. Y.; Kuo, H. H.; Huang, S. H.; Lin, G. R.; Li, L. J.; Su, C. Y.; Cheng, W. H. Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber. Opt. Express 2012, 20, 2460–2465.

[192]

Zhao, J. Q.; Ruan, S. C.; Yan, P. G.; Zhang, H.; Yu, Y. Q.; Wei, H. F.; Luo, J. Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser. Opt. Eng. 2013, 52, 106105.

[193]

Zhu, P. F.; Lin, Z. B.; Ning, Q. Y.; Cai, Z. R.; Xing, X. B.; Liu, J.; Chen, W. C.; Luo, Z. C.; Luo, A. P.; Xu, W. C. Passive harmonic mode-locking in a fiber laser by using a microfiber-based graphene saturable absorber. Laser Phys. Lett. 2013, 10, 105107.

[194]

Zhao, N.; Liu, M.; Liu, H.; Zheng, X. W.; Ning, Q. Y.; Luo, A. P.; Luo, Z. C.; Xu, W. C. Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber-based graphene saturable absorber. Opt. Express 2014, 22, 10906–10913.

[195]

Park, N. H.; Jeong, H.; Choi, S. Y.; Kim, M. H.; Rotermund, F.; Yeom, D. I. Monolayer graphene saturable absorbers with strongly enhanced evanescent-field interaction for ultrafast fiber laser mode-locking. Opt. Express 2015, 23, 19806–19812.

[196]

Mouchel, P.; Semaan, G.; Niang, A.; Salhi, M.; Le Flohic, M.; Sanchez, F. High power passively mode-locked fiber laser based on graphene nanocoated optical taper. Appl. Phys. Lett. 2017, 111, 031106.

[197]

Khurgin, J. B. Graphene—A rather ordinary nonlinear optical material. Appl. Phys. Lett. 2014, 104, 161116.

[198]

Hendry, E.; Hale, P. J.; Moger, J.; Savchenko, A. K.; Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 2010, 105, 097401.

[199]

Morichetti, F.; Canciamilla, A.; Ferrari, C.; Samarelli, A.; Sorel, M.; Melloni, A. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2011, 2, 296.

[200]

Foster, M. A.; Salem, R.; Geraghty, D. F.; Turner-Foster, A. C.; Lipson, M.; Gaeta, A. L. Silicon-chip-based ultrafast optical oscilloscope. Nature 2008, 456, 81–84.

[201]

Yang, Y. X.; Xu, Z. Z.; Jiang, X. H.; He, Y.; Guo, X. H.; Zhang, Y.; Qiu, C. Y.; Su, Y. K. High-efficiency and broadband four-wave mixing in a silicon-graphene strip waveguide with a windowed silica top layer. Photonics Res. 2018, 6, 965–970.

[202]

Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.

[203]

Grigorenko, A. N.; Polini, M.; Novoselov, K. S. Graphene plasmonics. Nat. Photonics 2012, 6, 749–758.

[204]

Davidovikj, D.; Alijani, F.; Cartamil-Bueno, S. J.; Van Der Zant, H. S. J.; Amabili, M.; Steeneken, P. G. Nonlinear dynamic characterization of two-dimensional materials. Nat. Commun. 2017, 8, 1253.

[205]

Ngo, G. Q.; George, A.; Schock, R. T. K.; Tuniz, A.; Najafidehaghani, E.; Gan, Z. Y.; Geib, N. C.; Bucher, T.; Knopf, H.; Saravi, S. et al. Scalable functionalization of optical fibers using atomically thin semiconductors. Adv. Mater. 2020, 32, 2003826.

[206]

Li, Y. L.; Rao, Y.; Mak, K. F.; You, Y. M.; Wang, S. Y.; Dean, C. R.; Heinz, T. F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333.

[207]

Liu, X. F.; Guo, Q. B.; Qiu, J. R. Emerging low-dimensional materials for nonlinear optics and ultrafast photonics. Adv. Mater. 2017, 29, 1605886.

[208]

Liu, H. Z.; Li, Y. L.; You, Y. S.; Ghimire, S.; Heinz, T. F.; Reis, D. A. High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 2017, 13, 262–265.

[209]

Zhang, J.; Liao, G. Z.; Jin, S. S.; Cao, D.; Wei, Q. S.; Lu, H. H.; Yu, J. H.; Cai, X.; Tan, S. Z.; Xiao, Y. et al. All-fiber-optic temperature sensor based on reduced graphene oxide. Laser Phys. Lett. 2014, 11, 035901.

[210]

Li, L.; Feng, Z. Y.; Qiao, X. G.; Yang, H. Z.; Wang, R. H.; Su, D.; Wang, Y. P.; Bao, W. J.; Li, J. C.; Shao, Z. H. et al. Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm. IEEE Sens. J. 2015, 15, 505–509.

[211]

Li, C.; Liu, Q. W.; Peng, X. B.; Fan, S. C. Analyzing the temperature sensitivity of Fabry–Perot sensor using multilayer graphene diaphragm. Opt. Express 2015, 23, 27494–27502.

[212]

Yao, B. C.; Wu, Y.; Zhang, A. Q.; Rao, Y. J.; Wang, Z. G.; Cheng, Y.; Gong, Y.; Zhang, W. L.; Chen, Y. F.; Chiang, K. S. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Opt. Express 2014, 22, 28154–28162.

[213]

Sridevi, S.; Vasu, K. S.; Bhat, N.; Asokan, S.; Sood, A. K. Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings. Sens. Actuat. B: Chem. 2016, 223, 481–486.

[214]

Tian, Z. W.; Lu, H. H.; Yang, B.; Wang, Y. T.; Qiu, W. Q.; Yu, J. H.; Tang, J. Y.; Luo, Y. H.; Cai, X.; Tan, S. Z. et al. Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing. IEEE Photonics Technol. Lett. 2015, 27, 798–801.

[215]

Sansone, L.; Malachovska, V.; La Manna, P.; Musto, P.; Borriello, A.; De Luca, G.; Giordano, M. Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sens. Actuat. B: Chem. 2014, 202, 523–526.

[216]

Ao, Z. M.; Yang, J.; Li, S.; Jiang, Q. Enhancement of CO detection in Al doped graphene. Chem. Phys. Lett. 2008, 461, 276–279.

[217]

An, N.; Tan, T.; Peng, Z.; Qin, C. Y.; Yuan, Z. Y.; Bi, L.; Liao, C. R.; Wang, Y. P.; Rao, Y. J.; Soavi, G. et al. Electrically tunable four-wave-mixing in graphene heterogeneous fiber for individual gas molecule detection. Nano Lett. 2020, 20, 6473–6480.

[218]

Yan, S. Q.; Zhu, X. L.; Frandsen, L. H.; Xiao, S. S.; Mortensen, N. A.; Dong, J. J.; Ding, Y. H. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nat. Commun. 2017, 8, 14411.

[219]

Yao, B. C.; Wu, Y.; Cheng, Y.; Zhang, A. Q.; Gong, Y.; Rao, Y. J.; Wang, Z. G.; Chen, Y. F. All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sens. Actuat. B: Chem. 2014, 194, 142–148.

[220]

Kim, J. T.; Choi, H.; Shin, E.; Park, S.; Kim, I. G. Graphene-based optical waveguide tactile sensor for dynamic response. Sci. Rep. 2018, 8, 16118.

[221]

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

[222]

Chen, S. S.; Wu, Q. Z.; Mishra, C.; Kang, J. Y.; Zhang, H. J.; Cho, K.; Cai, W. W.; Balandin, A. A.; Ruoff, R. S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207.

[223]

Xu, X. F.; Pereira, L. F. C.; Wang, Y.; Wu, J.; Zhang, K. W.; Zhao, X. M.; Bae, S.; Bui, C. T.; Xie, R. G.; Thong, J. T. L. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 2014, 5, 3689.

[224]

Lin, L.; Peng, H. L.; Liu, Z. F. Synthesis challenges for graphene industry. Nat. Mater. 2019, 18, 520–524.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 December 2021
Revised: 05 May 2022
Accepted: 13 May 2022
Published: 14 June 2022
Issue date: November 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. U1904193), the Special Program for Basic Research in University of Henan Province, China (No. 20zx010), the Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province, China (No. 2019GGJS025), the Science and Technology Development Project of Henan Province, China (No. 212102210454), the Program for Innovative Research Team in Science and Technology in the University of Henan Province (No. 20IRTSTHN012), the Zhongyuan Thousand Talents Program of Henan Province, and the National Young Top-Notch Talents of Ten-Thousand Talents Program.

Return