Journal Home > Volume 15 , Issue 10

Lithium-sulfur (Li-S) batteries have been widely investigated attributed to their advantages of high energy density and cost effectiveness. However, it is still limited by the uncontrolled shuttle effect of the sulfur cathode and the promiscuous dendrite growth over the lithium anode. To handle the above issues, the highly conductive CoTe catalyst is precisely loaded onto nitrogen-doped nanotube and graphene-like carbon (CoTe NCGs), which is employed as a bi-functionally integrated host. On the lithium anode, the CoTe NCGs with excellent lithiophilic property effectively regulate the uniform deposition of lithium and achieve the effect of suppressing the disorderly growth of lithium dendrites. On the sulfur cathode, the electrochemical conversion of lithium polysulfides (LiPSs) is catalyzed to mitigate the notorious shuttle effect. In view of the bifunctionality of CoTe NCGs, the assembled full cell can be steadily stable even for 800 cycles at a high rate of 2 C, and the capacity decay rate is only 0.05% per cycle. The areal capacity of 6.0 mAh·cm−2 is well retained after 50 cycles under the conditions of high sulfur loading, poor electrolyte (a low electrolyte-to-sulfur ratio, E/S = 4.2), and low negative to positive capacity ratio (N/P=1.6:1).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ embedding CoTe catalyst into 1D-2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries

Show Author's information Bin Li1Peng Wang1Baojuan Xi1( )Ning Song1Xuguang An2Weihua Chen3Jinkui Feng4Shenglin Xiong1( )
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Key Laboratory of Mechanical Engineering of Education, School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
School of Materials Science and Engineering, Shandong University, Jinan 250061, China

Abstract

Lithium-sulfur (Li-S) batteries have been widely investigated attributed to their advantages of high energy density and cost effectiveness. However, it is still limited by the uncontrolled shuttle effect of the sulfur cathode and the promiscuous dendrite growth over the lithium anode. To handle the above issues, the highly conductive CoTe catalyst is precisely loaded onto nitrogen-doped nanotube and graphene-like carbon (CoTe NCGs), which is employed as a bi-functionally integrated host. On the lithium anode, the CoTe NCGs with excellent lithiophilic property effectively regulate the uniform deposition of lithium and achieve the effect of suppressing the disorderly growth of lithium dendrites. On the sulfur cathode, the electrochemical conversion of lithium polysulfides (LiPSs) is catalyzed to mitigate the notorious shuttle effect. In view of the bifunctionality of CoTe NCGs, the assembled full cell can be steadily stable even for 800 cycles at a high rate of 2 C, and the capacity decay rate is only 0.05% per cycle. The areal capacity of 6.0 mAh·cm−2 is well retained after 50 cycles under the conditions of high sulfur loading, poor electrolyte (a low electrolyte-to-sulfur ratio, E/S = 4.2), and low negative to positive capacity ratio (N/P=1.6:1).

Keywords: Li-S batteries, dual-functional, lithium dendrite, CoTe nanocrystals, shuttling effect

References(57)

1

Chung, S. H.; Manthiram, A. Current status and future prospects of metal-sulfur batteries. Adv. Mater. 2019, 31, 1901125.

2

Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

3

Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.

4

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

5

Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N. et al. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 2021, 143, 6542–6550.

6

Zhao, Y. Y.; Ye, Y. S.; Wu, F.; Li, Y. J.; Li, L.; Chen, R. J. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 2019, 31, 1806532.

7

Huang, J. Q.; Zhai, P. Y.; Peng, H. J.; Zhu, W. C.; Zhang, Q. Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. Sci. Bull. 2017, 62, 1267–1274.

8

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

9

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

10

Wu, Q. P.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano 2019, 13, 9520–9532.

11

Li, X. C.; Zhang, Y.; Wang, S. T.; Liu, Y.; Ding, Y.; He, G. H.; Jiang, X. B.; Xiao, W.; Yu, G. H. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Lett. 2020, 20, 6922–6929.

12

Ma, L. B.; Chen, R. P.; Zhu, G. Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J.; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.

13

Wang, P.; Xi, B. J.; Zhang, Z. C. Y.; Song, N.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Dual-functional MgO nanocrystals satisfying both polysulfides and Li regulation toward advanced lithium-sulfur full batteries. Small 2021, 17, 2103744.

14

Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Li, X, X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

15

Liu, Y. P.; Ma, S. Y.; Liu, L. F.; Koch, J.; Rosebrock, M.; Li, T. R.; Bettels, F.; He, T.; Pfnür, H.; Bigall, N. C. et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 2020, 30, 2002462.

16

Li, W. D.; Wang, D. Z.; Song, Z. H; Gong, Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Res. 2019, 12, 2908–2917.

17

Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

18

Tian, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901896.

19

Yang, D. W.; Liang, Z. F.; Zhang, C. Q.; Biendicho, J. J.; Botifoll, M.; Spadaro, M. C.; Chen, Q. L.; Li, M. Y.; Ramon, A.; Moghaddam, A. O. et al. NbSe2 meets C2N: A 2D-2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101250.

20

Ye, C.; Jiao, Y.; Jin, H. Y.; Slattery, A. D.; Davey, K.; Wang, H. H.; Qiao, S. Z. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703–16707.

21

Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

22

Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

23

Liu, G. Z.; Zhang, Z. C. Y.; Tian, W. Z.; Chen, W. H.; Xi, B. J.; Li, H. B.; Feng, J. K.; Xiong, S. L. Ni12P5 nanoparticles bound on graphene sheets for advanced lithium-sulfur batteries. Nanoscale 2020, 12, 10760–10770.

24

Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

25

Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

26

Huang, Z. M.; Ren, J.; Zhang, W.; Xie, M. L.; Li, Y. K.; Sun, D.; Shen, Y.; Huang, Y. H. Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 2018, 30, 1803270.

27

Liang, J. W.; Li, X. N. ; Zhao, Y.; Goncharova, L. V.; Wang, G. M.; Adair, K. R.; Wang, C. H.; Li, R. Y.; Zhu, Y. C.; Qian, Y. T. et al. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes. Adv. Mater. 2018, 3, 1804684.

28

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

29

Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

30

Qiu, H. L.; Tang, T. Y.; Asif, M., Huang, X. X.; Hou, Y. L. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Adv. Funct. Mater. 2019, 29, 1808468.

31

Luo, R.; Zhang, Z. C. Y.; Zhang, J.; Xi, B. J.; Tian, F.; Chen, W. H.; Feng, J. K. Xiong, S. L. Bimetal CoNi active sites on mesoporous carbon nanosheets to kinetically boost lithium-sulfur batteries. Small 2021, 17, 2100414.

32

Wang, J. N.; Yi, S. S.; Liu, J. W.; Sun, S. Y.; Liu, Y. P.; Yang, D. W.; Xi, K.; Gao, G. X.; Abdelkader, A.; Yan, W. et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano 2020, 14, 9819–9831.

33

Wang, P.; Sun, F. H.; Xiong, S. L.; Zhang, Z. C. Y.; Duan, B.; Zhang, C. H.; Feng, J. K.; Xi, B. J. WSe2 flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating. Angew. Chem., Int. Ed. 2022, 134, e202116048.

34

He, J. R.; Manthiram, A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv. Energy Mater. 2020, 10, 1903241.

35

Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

36

Li, Y. J.; Gao, T. T.; Ni, D. Y.; Zhou, Y.; Yousaf, M.; Guo, Z. Q.; Zhou, J. H.; Zhou, P.; Wang, Q.; Guo, S. J. Two birds with one stone: Interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2107638.

37

Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

38

Huang, T.; Sun, Y. J.; Wu, J. H.; Jin, J.; Wei, C. H.; Shi, Z. X.; Wang, M. L.; Cai, J. S.; An, X. T.; Wang, P. et al. A dual-functional fibrous skeleton implanted with single-atomic Co-Nx dispersions for longevous Li-S full batteries. ACS Nano 2021, 15, 14105–14115.

39

Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. X.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem. , Int. Ed. 2017, 56, 7769–7773.

40

Song, X. Q.; Tian, D.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q. Efficient polysulfide trapping and conversion on N-doped CoTe2 via enhanced dual-anchoring effect. Small 2021, 17, 2102962.

41

Yu, B.; Huang, A. J.; Srinivas, K.; Zhang, X. J.; Ma, F.; Wang, X. Q.; Chen, D. J.; Wang, B.; Zhang, W. L.; Wang, Z. G. et al. Outstanding catalytic effects of 1T'-MoTe2 quantum dots@3D graphene in shuttle-free Li-S batteries. ACS Nano 2021, 15, 13279–13288.

42
HeJ. R.BhargavA.ManthiramA. In situ grown 1T'-MoTe2 nanosheets on carbon nanotubes as an efficient electrocatalyst and lithium regulator for stable lithium-sulfur full cellsAdv. Energy Mater.202212111691118610.1002/aenm.202103204

He, J. R.; Bhargav, A.; Manthiram, A. In situ grown 1T'-MoTe2 nanosheets on carbon nanotubes as an efficient electrocatalyst and lithium regulator for stable lithium-sulfur full cells. Adv. Energy Mater. 2022, 12, 11169–11186.

43

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

44

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

45

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

46

Sheppard, D.; Xiao, P. H.; Chemelewski, W.; Johnson, D. D.; Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012, 136, 074103.

47

Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. 2019, 131, 4977–4982.

48

Karim, M. R.; Shinoda, H.; Nakai, M.; Hatakeyama, K.; Kamihata, H.; Matsui, T.; Taniguchi, T.; Koinuma, M.; Kuroiwa, K.; Kurmoo, M. et al. Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid. Adv. Funct. Mater. 2013, 23, 323–332.

49

Wu, Q. P.; Yao, Z. G.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS Nano 2020, 14, 3365–3377.

50

Song, X. Q.; Tian, D.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Fan, L. S.; Zhang, N. Q. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries. Energy Storage Mater. 2021, 41, 248–254.

51

Liang, X.; Kwok, C. Y.; Lodi‐Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

52

Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 2018, 12, 9578–9586.

53

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Wang, D. H. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett. 2016, 16, 864–870.

54

Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 9078–9082.

55

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

56

Pang, Q.; Kwok, C. Y.; Kundu, D.; Liang, X.; Nazar, L. F. Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 2019, 3, 136–148.

57

Wei, Y. Y.; Wang, B. Y.; Zhang, Y.; Zhang, M.; Wang, Q.; Zhang, Y.; Wu, H. Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward high-performance Li-S full batteries. Adv. Funct. Mater. 2021, 31, 2006033.

File
12274_2022_4537_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 April 2022
Revised: 11 May 2022
Accepted: 12 May 2022
Published: 20 June 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China (Nos. U21A2077 and 21971145), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), the Natural Science Foundation of Shandong Province (Nos. ZR2021ZD05 and ZR2019MB024), and Anhui Kemi Machinery Technology Co., Ltd. for providing a Teflonlined stainless steel autoclave.

Return