AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers

Jin Liang1Chunwei Li1Xin Cao1Yuxiang Wang1Zongcheng Li1Benzheng Gao2Zeyou Tong2Bin Wang3( )Shuchen Wan2Jie Kong1( )
MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
China Academy of Launch Vehicle Technology, Beijing 100076, China
Minmetals exploration & development CO. LTD, Beijing 100010, China
Show Author Information

Graphical Abstract

The uniform hierarchical magnetic–dielectric composites of hollow hydrangea-like nitrogen doped NiO/Ni/carbon were successfully achieved and applied them as absorbers in electromagnetic wave absorption. The magnetic coupling network and conductivity network of the hollow structure combined with the multiple components and structures endow the HF NiO/Ni/C with matched impedance and good attenuation ability. The HF NiO/Ni/C 800–10 composites possess the strong reflection loss of –45.8 dB at 1.7 mm and wide bandwidth of 5.6 GHz.

Abstract

Hierarchical hollow-structured magnetic–dielectric materials are considered to be promising and competitive functional absorbers for microwave absorption (MA). Herein, a hierarchical hollow hydrangea multicomponent metal oxides/metal-carbon was designed and successfully produced via a facile self-assembly method and calcination process. Adequate magnetic NiO and Ni nanoparticles were suspended within the hollow hydrangea-like nitrogen-doped carbon matrix (HH N-NiO/Ni/C), constructing a unique hierarchical hollow structured multicomponent magnetic–dielectric MA composite. The annealing temperature and oxidation time were carefully regulated to investigate the complex permittivity and permeability. HH N-NiO/Ni/C delivers exceptional MA properties with maximum reflection loss of –45.8 dB at 1.7 mm thickness and displays a wide effective absorption frequency range of 5.6 GHz. The superior MA performance can be attributed to the following aspects: (1) The hierarchical hollow multicomponent structure offers plentiful of heterojunction interfaces triggering interfacial polarization; (2) nitrogen doped-carbon (N-C) facilitates the conductive loss by the unique electron migration path in the graphitized C and NiO/Ni; (3) magnetic NiO/Ni nanoparticles homogeneously dispersed within N-C form extensive C skeleton and strengthen the magnetic response ability; (4) hierarchical hollow wrinkled structures possess a large interspace and heterogeneous interface improving polarization loss and enhancing multireflection process and the unique structure satisfies magnetic and dielectric loss simultaneously resulting from synergistic effects of different components within the composites.

Electronic Supplementary Material

Download File(s)
12274_2022_4511_MOESM1_ESM.pdf (3.2 MB)

References

1

Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446–450.

2

Qiao, J.; Zhang, X.; Liu, C.; Lyu, L. F.; Yang, Y. F.; Wang, Z.; Wu, L. L.; Liu, W.; Wang, F. L.; Liu, J. R. Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 2021, 13, 75.

3

Lv, H. L.; Yang, Z. H.; Wang, P. L.; Ji, G. B.; Song, J. Z.; Zheng, L. R.; Zeng, H. B.; Xu, Z. J. A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 2018, 30, 1706343.

4

Huang, X. G.; Qiao, M.; Lu, X. C.; Li, Y. F.; Ma, Y. B.; Kang, B.; Quan, B.; Ji, G. B. Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 2021, 14, 4006–4013.

5

Gu, W. H.; Sheng, J. Q.; Huang, Q. Q.; Wang, G. H.; Chen, J. B.; Ji, G. B. Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 2021, 13, 102.

6

Cheng, Y.; Seow, J. Z. Y.; Zhao, H. Q.; Xu, Z. J.; Ji, G. B. A flexible and lightweight biomass-reinforced microwave absorber. Nano-Micro Lett. 2020, 12, 125.

7

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

8

Xu, C. Y.; Wang, L.; Li, X.; Qian, X.; Wu, Z. C.; You, W. B.; Pei, K.; Qin, G.; Zeng, Q. W.; Yang, Z. Q. et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 47.

9

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

10

Yang, H. J.; Wang, X. P.; Wang, S. B.; Zhang, P. Y.; Xiao, C.; Sari, H. M. K.; Liu, J. H.; Jia, J. C.; Cao, B.; Qin, J. et al. Double boosting single atom Fe-N4 sites for high efficiency O2 and CO2 electroreduction. Carbon 2021, 182, 109–116.

11

Zhang, Y. L.; Gu, J. W. A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 2022, 14, 89.

12

Du, Y. Z.; Wang, X. D.; Dai, X. Y.; Li, W. X.; Tang, Y. S.; Kong, J. Ultraflexible, highly efficient electromagnetic interference shielding, and self-healable triboelectric nanogenerator based on Ti3C2Tx MXene for self-powered wearable electronics. J. Mater. Sci. Tech. 2022, 100, 1–11.

13

Song, Y.; Yin, F. X.; Zhang, C. W.; Guo, W. B.; Han, L. Y.; Yuan, Y. Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 2021, 13, 76.

14

Liang, J.; Chen, J.; Shen, H. Q.; Hu, K. T.; Zhao, B. N.; Kong, J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 2021, 33, 1789–1798.

15

Wang, J. Q.; Wu, F.; Cui, Y. H.; Zhang, A. B.; Zhang, Q. Y.; Zhang, B. L. Efficient synthesis of N-doped porous carbon nanoribbon composites with selective microwave absorption performance in common wavebands. Carbon 2021, 175, 164–175.

16

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

17

Wang, L.; Huang, M. Q.; Qian, X.; Liu, L. L.; You, W. B.; Zhang, J.; Wang, M.; Che, R. C. Confined magnetic–dielectric balance boosted electromagnetic wave absorption. Small 2021, 17, 2100970.

18

Deng, B. W.; Xiang, Z.; Xiong, J.; Liu, Z. C.; Yu, L. Z.; Lu, W. Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 2020, 12, 55.

19

Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

20

Sun, H.; Che, R. C.; You, X.; Jiang, Y. S.; Yang, Z. B.; Deng, J.; Qiu, L. B.; Peng, H. S. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 2014, 26, 8120–8125.

21

Quan, B.; Gu, W. H.; Sheng, J. Q.; Lv, X. F.; Mao, Y. Y.; Liu, L.; Huang, X. G.; Tian, Z. J.; Ji, G. B. From intrinsic dielectric loss to geometry patterns: Dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 2021, 14, 1495–1501.

22

Liang, J.; Hu, H.; Park, H.; Xiao, C. H.; Ding, S. J.; Paik, U.; Lou, X. W. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy Environ. Sci. 2015, 8, 1707–1711.

23

Calles, J. A.; Carrero, A.; Vizcaíno, A. J.; Lindo, M. Effect of Ce and Zr addition to Ni/SiO2 catalysts for hydrogen production through ethanol steam reforming. Catalysts 2015, 5, 58–76.

24

Zou, X.; Sun, Q.; Zhang, Y. X.; Li, G. D.; Liu, Y. P.; Wu, Y. Y.; Yang, L.; Zou, X. X. Ultrafast surface modification of Ni3S2 nanosheet arrays with Ni-Mn bimetallic hydroxides for high-performance supercapacitors. Sci. Rep. 2018, 8, 4478.

25

Qian, R. F.; Zong, H. X.; Schneider, J.; Zhou, G. D.; Zhao, T.; Li, Y. L.; Yang, J.; Bahnemann, D. W.; Pan, J. H. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catal. Today 2019, 335, 78–90.

26

Shu, J. C.; Huang, X. Y.; Cao, M. S. Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 2021, 174, 638–646.

27

Zhang, Z. Z.; Jia, B. R.; Liu, L.; Zhao, Y. Z.; Wu, H. Y.; Qin, M. L.; Han, K.; Wang, W. A.; Xi, K.; Zhang, L. et al. Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 2019, 13, 11363–11371.

28

Li, J. Y.; Li, X. H.; Zhao, P. H.; Lei, D. Y.; Li, W. L.; Bai, J. T.; Ren, Z. Y.; Xu, X. L. Searching for magnetism in pyrrolic N-doped graphene synthesized via hydrothermal reaction. Carbon 2015, 84, 460–468.

29

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

30

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214–1221.

31

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

32

Moitra, D.; Dhole, S.; Ghosh, B. K.; Chandel, M.; Jani, R. K.; Patra, M. K.; Vadera, S. R.; Ghosh, N. N. Synthesis and microwave absorption properties of BiFeO3 nanowire-RGO nanocomposite and first-principles calculations for insight of electromagnetic properties and electronic structures. J. Phys. Chem. C 2017, 121, 21290–21304.

33

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

34

Cui, X. Q.; Liang, X. H.; Liu, W.; Gu, W. H.; Ji, G. B.; Du, Y. W. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 2020, 381, 122589.

35

Lan, D.; Gao, Z. G.; Zhao, Z. H.; Wu, G. L.; Kou, K. C.; Wu, H. J. Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. 2021, 408, 127313.

36

Zhao, B.; Guo, X. Q.; Zhou, Y. Y.; Su, T. T.; Ma, C.; Zhang, R. Constructing hierarchical hollow CuS microspheres via a galvanic replacement reaction and their use as wide-band microwave absorbers. Crystengcomm 2017, 19, 2178–2186.

37

Lv, J.; Liang, X. H.; Ji, G. B.; Quan, B.; Liu, W.; Du, Y. W. Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities. ACS Sustainable Chem. Eng. 2018, 6, 7239–7249.

38

Qu, Y. P.; Du, Y.; Fan, G. H.; Xin, J. H.; Liu, Y.; Xie, P. T.; You, S. X.; Zhang, Z. D.; Sun, K.; Fan, R. H. Low-temperature sintering graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J. Alloys Compd. 2019, 771, 699–710.

39

Wang, L. X.; Zhou, P. P.; Guo, Y.; Zhang, J.; Qiu, X.; Guan, Y. K.; Yu, M. X.; Zhu, H. L.; Zhang, Q. T. The effect of ZnCl2 activation on microwave absorbing performance in walnut shell-derived nano-porous carbon. RSC Adv. 2019, 9, 9718–9728.

40

Feng, J.; Pu, F. Z.; Li, Z. X.; Li, X. H.; Hu, X. Y.; Bai, J. T. Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 2016, 104, 214–225.

41

Liu, X. G.; Li, B.; Geng, D. Y.; Cui, W. B.; Yang, F.; Xie, Z. G.; Kang, D. J.; Zhang, Z. D. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 2009, 47, 470–474.

42

Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

43

Ying, T. P.; Zhang, J.; Liu, X. G.; Yu, J. H.; Yu, J. Y.; Zhang, X. F. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application. J. Alloys Compd. 2020, 849, 156662.

44

Ren, H. D.; Shu, X. F.; Liu, Z. Y.; Zhou, J.; Ma, J. L.; Liu, Y.; Kong, L. B.; Min, F. F.; Shi, X. C.; Han, J. J. et al. In-situ synthesis of layered porous coal-derived carbon/Ni magnetic composites with promising microwave absorption performance. J. Magn. Magn. Mater. 2020, 513, 167231.

45

Li, W. X.; Guo, F.; Wei, X. Q.; Du, Y. E.; Chen, Y. Q. Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption. RSC Adv. 2020, 10, 36644–36653.

46

Uddin, W.; ur Rehman, S.; Aslam, M. A.; ur Rehman, S.; Wu, M. Z.; Zhu, M. Z. Enhanced microwave absorption from the magnetic–dielectric interface: A hybrid rGO@Ni-doped-MoS2. Mater. Res. Bull. 2020, 130, 110943.

47

Liu, Y.; Ji, C.; Su, X. L.; He, X. H.; Xu, J.; Li, Y. Y. Enhanced microwave absorption properties of flaky MoS2 powders by decorating with Ni particles. J. Magn. Magn. Mater. 2020, 511, 166961.

48

Fan, G. H.; Jiang, Y. L.; Hou, C. X.; Deng, X. R.; Liu, Z. X.; Zhang, L. J.; Zhang, Z. D.; Fan, R. H. Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing. J. Alloys Compd. 2020, 835, 155345.

49

Wang, Z. X.; Yu, Q.; Nie, W. C.; Chen, P. Preparation and microwave absorption properties of Ni/rGO/EP composite foam. J. Mater. Res. 2020, 35, 2106–2114.

50

Shen, Y. Q.; Wei, Y. P.; Ma, J. Q.; Zhang, Y. C.; Ji, B. H.; Tang, J.; Zhang, L. Y.; Yan, P. Z.; Du, X. Y. Self-cleaning functionalized FeNi/NiFe2O4/NiO/C nanofibers with enhanced microwave absorption performance. Ceram. Int. 2020, 46, 13397–13406.

51

Liu, Y.; Zhang, S.; Su, X. L.; Xu, J.; Li, Y. Y. Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. J. Mater. Sci. 2020, 55, 10339–10350.

52

Qiu, Y.; Lin, Y.; Yang, H. B.; Wang, L.; Wang, M. Q.; Wen, B. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 2020, 383, 123207.

53

Kuchi, R.; Latif, T.; Lee, S. W.; Dongquoc, V.; Van, P. C.; Kim, D.; Jeong, J. R. Controlling the electric permittivity of honeycomb-like core–shell Ni/CuSiO3 composite nanospheres to enhance microwave absorption properties. RSC Adv. 2020, 10, 1172–1180.

54

Li, N.; Xie, X.; Lu, H. X.; Fan, B. B.; Wang, X. H.; Zhao, B.; Zhang, R.; Yang, R. Novel two-dimensional Ti3C2Tx/Ni-spheres hybrids with enhanced microwave absorption properties. Ceram. Int. 2019, 45, 22880–22888.

55

Zheng, Y.; Zhang, W. D.; Zhang, X.; Zhu, Q.; Zhu, W. F.; Wang, R. M.; Qi, S. H. Structure and performance of Ni@Ni3S2 foam for microwave absorption. J. Phys. D:Appl. Phys. 2019, 52, 485003.

56

Liu, D. W.; Du, Y. C.; Xu, P.; Liu, N.; Wang, Y. H.; Zhao, H. H.; Cui, L. R.; Han, X. J. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 2019, 7, 5037–5046.

57

Huang, L. N.; Chen, C. G.; Huang, X. Y.; Ruan, S. C.; Zeng, Y. J. Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. Part B:Eng. 2019, 164, 583–589.

58

Wang, Z. Z.; Yang, W.; Lv, Q. R.; Liu, S. Q.; Fang, Z. Ferromagnetic and excellent microwave absorbing properties of CoNi microspheres and heterogeneous Co/Ni nanocrystallines. RSC Adv. 2019, 9, 13365–13371.

59

Gao, S. S.; An, Q. D.; Xiao, Z. Y.; Zhai, S. R.; Yang, D. J. Controllable N-doped carbonaceous composites with highly dispersed Ni nanoparticles for excellent microwave absorption. ACS Appl. Nano Mater. 2018, 1, 5895–5906.

Nano Research
Pages 6831-6840
Cite this article:
Liang J, Li C, Cao X, et al. Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers. Nano Research, 2022, 15(8): 6831-6840. https://doi.org/10.1007/s12274-022-4511-3
Topics:

1031

Views

28

Crossref

23

Web of Science

26

Scopus

3

CSCD

Altmetrics

Received: 12 April 2022
Revised: 06 May 2022
Accepted: 07 May 2022
Published: 16 June 2022
© Tsinghua University Press 2022
Return