Journal Home > Volume 15 , Issue 9

Amorphous materials are one kind of nonequilibrium materials and have become one of the most active research fields. Compared with crystalline solids, the theory of amorphous materials is still in infancy because their characteristic of atomic arrangement is more like liquid and has no long-range periodicity. Recently, as the representative of amorphous materials, amorphous molybdenum sulfide (a-MoSx) with unique physical and chemical properties has been studied extensively. However, considerable debate surrounds the structure–property relationships of a-MoSx owing to its diverse Mo-S motifs. Herein, we summarize recent discoveries and research results regarding a-MoSx, whose structural characteristics, synthetic strategies, formation criteria, and comprehensive applications are discussed in detail. Finally, this review is ended with our personal insights and critical outlooks over the development of a-MoSx.


menu
Abstract
Full text
Outline
About this article

Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications

Show Author's information Cheng Chang1Longlu Wang1( )Lingbin Xie2Weiwei Zhao2Shujuan Liu2Zechao Zhuang4Shijie Liu1Jianmin Li1Xia Liu3( )Qiang Zhao1,2( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, China
Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Amorphous materials are one kind of nonequilibrium materials and have become one of the most active research fields. Compared with crystalline solids, the theory of amorphous materials is still in infancy because their characteristic of atomic arrangement is more like liquid and has no long-range periodicity. Recently, as the representative of amorphous materials, amorphous molybdenum sulfide (a-MoSx) with unique physical and chemical properties has been studied extensively. However, considerable debate surrounds the structure–property relationships of a-MoSx owing to its diverse Mo-S motifs. Herein, we summarize recent discoveries and research results regarding a-MoSx, whose structural characteristics, synthetic strategies, formation criteria, and comprehensive applications are discussed in detail. Finally, this review is ended with our personal insights and critical outlooks over the development of a-MoSx.

Keywords: structural characterization, amorphous molybdenum sulfide, Mo-S motifs, synthetic strategies, comprehensive applications

References(234)

1

Hong, S.; Lee, C. S.; Lee, M. H.; Lee, Y.; Ma, K. Y.; Kim, G.; Yoon, S. I.; Ihm, K.; Kim, K. J.; Shin, T. J. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 2020, 582, 511–514.

2

Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

3

Jin, Y. H.; Li, A. Z.; Hazelton, S. G.; Liang, S.; John, C. L.; Selid, P. D.; Pierce, D. T.; Zhao, J. X. Amorphous silica nanohybrids: Synthesis, properties and applications. Coord. Chem. Rev. 2009, 253, 2998–3014.

4

Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

5

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

6

Toh, C. T.; Zhang, H. J.; Lin, J. H.; Mayorov, A. S.; Wang, Y. P.; Orofeo, C. M.; Ferry, D. B.; Andersen, H.; Kakenov, N.; Guo, Z. L. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 2020, 577, 199–203.

7

Liu, J. Z.; Guo, L. In situ self-reconstruction inducing amorphous species: A key to electrocatalysis. Matter 2021, 4, 2850–2873.

8

Fu, W.; Yang, S. Y.; Yang, H.; Guo, B.; Huang, Z. Q. 2D amorphous MoS3 nanosheets with porous network structures for scavenging toxic metal ions from synthetic acid mine drainage. J. Mater. Chem. A 2019, 7, 18799–18806.

9

Deng, Y. L.; Ting, L. R. L.; Neo, P. H. L.; Zhang, Y. J.; Peterson, A. A.; Yeo, B. S. Operando Raman spectroscopy of amorphous molybdenum sulfide (MoSx) during the electrochemical hydrogen evolution reaction: Identification of sulfur atoms as catalytically active sites for H+ reduction. ACS Catal. 2016, 6, 7790–7798.

10

Wu, L. F.; Longo, A.; Dzade, N. Y.; Sharma, A.; Hendrix, M. M. R. M.; Bol, A. A.; de Leeuw, N. H.; Hensen, E. J. M.; Hofmann, J. P. The origin of high activity of amorphous MoS2 in the hydrogen evolution reaction. ChemSusChem 2019, 12, 4383–4389.

11

Xie, J. F.; Xie, Y. Structural engineering of electrocatalysts for the hydrogen evolution reaction: Order or disorder. ChemCatChem 2015, 7, 2568–2580.

12

Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

13

Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923.

14

Lassalle-Kaiser, B.; Merki, D.; Vrubel, H.; Gul, S.; Yachandra, V. K.; Hu, X. L.; Yano, J. Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. J. Am. Chem. Soc. 2015, 137, 314–321.

15

Grutza, M. L.; Rajagopal, A.; Streb, C.; Kurz, P. Hydrogen evolution catalysis by molybdenum sulfides (MoSx): Are thiomolybdate clusters like [Mo3S13]2− suitable active site models. Sustainable Energy Fuels 2018, 2, 1893–1904.

16

Ting, L. R. L.; Deng, Y. L.; Ma, L.; Zhang, Y. J.; Peterson, A. A.; Yeo, B. S. Catalytic activities of sulfur atoms in amorphous molybdenum sulfide for the electrochemical hydrogen evolution reaction. ACS Catal. 2016, 6, 861–867.

17

Mabayoje, O.; Liu, Y.; Wang, M.; Shoola, A.; Ebrahim, A. M.; Frenkel, A. I.; Mullins, C. B. Electrodeposition of MoSx hydrogen evolution catalysts from sulfur-rich precursors. ACS Appl. Mater. Interfaces 2019, 11, 32879–32886.

18

Hibble, S. J.; Walton, R. I.; Pickup, D. M.; Hannon, A. C. Amorphous MoS3: Clusters or chains? The structural evidence. J. Non-Cryst. Solids 1998, 232–234, 434–439.

19

Müller, A.; Fedin, V.; Hegetschweiler, K.; Amrein, W. Characterization of amorphous substances by studying isotopically labelled compounds with FAB-MS: Evidence for extrusion of triangular Mo3IV clusters from a mixture of 92MoS3 and 100MoS3 by reaction with OH. J. Chem. Soc., Chem. Commun. 1992, 24, 1795–1796.

20

Weber, T.; Muijsers, J. C.; Niemantsverdriet, J. W. Structure of amorphous MoS3. J. Phys. Chem. 1995, 99, 9194–9200.

21

Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. Transition metal thiometalates: Properties and significance in complex and bioinorganic chemistry. Angew. Chem., Int. Ed. 1981, 20, 934–955.

22

Zhao, H. W.; Li, F. S.; Wang, S. X.; Guo, L. Wet chemical synthesis of amorphous nanomaterials with well-defined morphologies. Acc. Mater. Res. 2021, 2, 804–815.

23

Ma, X.; Chen, W. R.; Li, Q.; Xue, L. J.; Peng, C. Nitrogen-doped hierarchical heterostructured aerophobic MoSx/Ni3S2 nanowires by one-pot synthesis: System engineering and synergistic effect in electrocatalysis of hydrogen evolution reaction. Energy Environ. Mater. 2021, 4, 658–663.

24

Du, K. Z.; Zheng, L. R.; Wang, T. Y.; Zhuo, J. Q.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Electrodeposited Mo3S13 films from (NH4)2Mo3S13·2H2O for electrocatalysis of hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 18675–18681.

25

Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I. et al. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 2016, 15, 640–646.

26

Guo, C. Y.; Shi, Y. M.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Amorphous nanomaterials in electrocatalytic water splitting. Chin. J. Catal. 2021, 42, 1287–1296.

27

Zhao, H. W.; Chen, X. J.; Wang, G. Z.; Qiu, Y. F.; Guo, L. Two-dimensional amorphous nanomaterials: Synthesis and applications. 2D Mater. 2019, 6, 032002.

28

Hibble, S. J.; Wood, G. B. Modeling the structure of amorphous MoS3: A neutron diffraction and reverse Monte Carlo study. J. Am. Chem. Soc. 2004, 126, 959–965.

29

Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

30

Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515–2525.

31

Ma, L. J.; Wang, Q.; Islam, S. M.; Liu, Y. C.; Ma, S. L.; Kanatzidis, M. G. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42− ion. J. Am. Chem. Soc. 2016, 138, 2858–2866.

32

Oh, Y.; Morris, C. D.; Kanatzidis, M. G. Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. J. Am. Chem. Soc. 2012, 134, 14604–14608.

33

Subrahmanyam, K. S.; Sarma, D.; Malliakas, C. D.; Polychronopoulou, K.; Riley, B. J.; Pierce, D. A.; Chun, J.; Kanatzidis, M. G. Chalcogenide aerogels as sorbents for radioactive iodine. Chem. Mater. 2015, 27, 2619–2626.

34

Xie, L. X.; Yu, Z. H.; Islam, S. M.; Shi, K. R.; Cheng, Y. H.; Yuan, M. W.; Zhao, J.; Sun, G. B.; Li, H. F.; Ma, S. L. et al. Remarkable acid stability of polypyrrole-MoS4: A highly selective and efficient scavenger of heavy metals over a wide pH range. Adv. Funct. Mater. 2018, 28, 1800502.

35

Das, N. Recovery of precious metals through biosorption—A review. Hydrometallurgy 2010, 103, 180–189.

36

Wang, Z. Y.; Mi, B. X. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244.

37

Wang, Z. Y.; Sim, A.; Urban, J. J.; Mi, B. X. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: Performance and mechanisms. Environ. Sci. Technol. 2018, 52, 9741–9748.

38

Yuan, M. W.; Yao, H. Q.; Xie, L. X.; Liu, X. W.; Wang, H.; Islam, S. M.; Shi, K. R.; Yu, Z. H.; Sun, G. B.; Li, H. F. et al. Polypyrrole-Mo3S13: An efficient sorbent for the capture of Hg2+ and highly selective extraction of Ag+ over Cu2+. J. Am. Chem. Soc. 2020, 142, 1574–1583.

39

Yang, L. X.; Xie, L. X.; Chu, M. L.; Wang, H.; Yuan, M. W.; Yu, Z. H.; Wang, C. N.; Yao, H. Q.; Islam, S. M.; Shi, K. R. et al. Mo3S132− intercalated layered double hydroxide: Highly selective removal of heavy metals and simultaneous reduction of Ag+ ions to metallic Ag0 ribbons. Angew. Chem., Int. Ed. 2022, 61, e202112511.

40

Xi, F. X.; Bogdanoff, P.; Harbauer, K.; Plate, P.; Höhn, C.; Rappich, J.; Wang, B.; Han, X. Y.; van de Krol, R.; Fiechter, S. Structural transformation identification of sputtered amorphous MoSx as an efficient hydrogen-evolving catalyst during electrochemical activation. ACS Catal. 2019, 9, 2368–2380.

41

Ding, R. M.; Wang, M. C.; Wang, X. F.; Wang, H. X.; Wang, L. C.; Mu, Y. W.; Lv, B. L. N-doped amorphous MoSx for the hydrogen evolution reaction. Nanoscale 2019, 11, 11217–11226.

42

Ma, M. Z.; Zhang, S. P.; Wang, L. F.; Yao, Y.; Shao, R. W.; Shen, L.; Yu, L.; Dai, J. Y.; Jiang, Y.; Cheng, X. L. et al. Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries. Adv. Mater. 2021, 33, 2106232.

43

Chen, H. H.; Ke, G. X.; Wu, X. C.; Li, W. Q.; Li, Y. L.; Mi, H. W.; Sun, L. N.; Zhang, Q. L.; He, C. X.; Ren, X. Z. Amorphous MoS3 decoration on 2D functionalized MXene as a bifunctional electrode for stable and robust lithium storage. Chem. Eng. J. 2021, 406, 126775.

44

Ye, H. L.; Ma, L.; Zhou, Y.; Wang, L.; Han, N.; Zhao, F. P.; Deng, J.; Wu, T. P.; Li, Y. G.; Lu, J. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 13091–13096.

45

Shafaei-Fallah, M.; Rothenberger, A.; Katsoulidis, A. P.; He, J. Q.; Malliakas, C. D.; Kanatzidis, M. G. Extraordinary selectivity of CoMo3S13 chalcogel for C2H6 and CO2 adsorption. Adv. Mater. 2011, 23, 4857–4860.

46

Bag, S.; Gaudette, A. F.; Bussell, M. E.; Kanatzidis, M. G. Spongy chalcogels of non-platinum metals act as effective hydrodesulfurization catalysts. Nat. Chem. 2009, 1, 217–224.

47

Chang, C. H.; Chan, S. S. Infrared and Raman studies of amorphous MoS3 and poorly crystalline MoS2. J. Catal. 1981, 72, 139–148.

48

Jiao, H. J.; Li, Y. W.; Delmon, B.; Halet, J. F. The structure and possible catalytic sites of Mo3S9 as a model of amorphous molybdenum trisulfide: A computational study. J. Am. Chem. Soc. 2001, 123, 7334–7339.

49

Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060–2063.

50

Li, G.; Jin, R. C. Atomically precise gold nanoclusters as new model catalysts. Acc. Chem. Res. 2013, 46, 1749–1758.

51

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

52

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

53

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

54

Guo, F. S.; Hou, Y. D.; Asiri, A. M.; Wang, X. C. Assembly of protonated mesoporous carbon nitrides with co-catalytic [Mo3S13]2− clusters for photocatalytic hydrogen production. Chem. Commun. 2017, 53, 13221–13224.

55

Luo, J. M.; Fu, K. X.; Sun, M.; Yin, K.; Wang, D.; Liu, X.; Crittenden, J. C. Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2. ACS Appl. Mater. Interfaces 2019, 11, 38789–38797.

56

Zhang, Z. L.; Cai, J.; Zhu, H.; Zhuang, Z. C.; Xu, F. P.; Hao, J. C.; Lu, S. L.; Li, H. N.; Duan, F.; Du, M. L. Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms. Chem. Eng. J. 2020, 392, 123655.

57

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

58

Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R. One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326–3370.

59

Huo, D.; Kim, M. J.; Lyu, Z.; Shi, Y. F.; Wiley, B. J.; Xia, Y. N. One-dimensional metal nanostructures: From colloidal syntheses to applications. Chem. Rev. 2019, 119, 8972–9073.

60

Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

61

Zhao, M. T.; Lu, Q. P.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets. Small Methods 2017, 1, 1600030.

62

Guan, Z. L.; Li, X. M.; Wu, Y.; Chen, Z.; Huang, X. D.; Wang, D. B.; Yang, Q.; Liu, J. L.; Tian, S. H.; Chen, X. Y. et al. AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride. Chem. Eng. J. 2021, 410, 128283.

63

Zhang, Z. H.; Penev, E. S.; Yakobson, B. I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746–6763.

64

Fan, F. R.; Wang, R. X.; Zhang, H.; Wu, W. Z. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev. 2021, 50, 10983–11031.

65

Xu, Q.; Zhang, J.; Wang, D. S.; Li, Y. D. Single-atom site catalysts supported on two-dimensional materials for energy applications. Chin. Chem. Lett. 2021, 32, 3771–3781.

66

Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.

67

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

68

Wang, P. P.; Sun, H. Y.; Ji, Y. J.; Li, W. H.; Wang, X. Three-dimensional assembly of single-layered MoS2. Adv. Mater. 2014, 26, 964–969.

69

Qiu, H. J.; Du, P.; Hu, K. L.; Gao, J. J.; Li, H. L.; Liu, P.; Ina, T.; Ohara, K.; Ito, Y.; Chen, M. W. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 2019, 31, 1900843.

70

Vyatskikh, A.; Delalande, S.; Kudo, A.; Zhang, X.; Portela, C. M.; Greer, J. R. Additive manufacturing of 3D nano-architected metals. Nat. Commun. 2018, 9, 593.

71

Müller, A.; Nolte, W. O.; Krebs, B. [(S2)2Mo(S2)2Mo(S2)2]2−, a novel complex containing only S22− ligands and a Mo–Mo bond. Angew. Chem., Int. Ed. 1978, 17, 279.

72

Müller, A.; Bhattacharyya, R. G.; Pfefferkorn, B. Eine einfache darstellung der binären metall-schwefel-cluster [Mo3S13]2− und [Mo2S12]2− aus MoO42− in praktisch quantitativer ausbeute. Chem. Ber. 1979, 112, 778–780.

73

Müller, A. Coordination chemistry of Mo- and W-S compounds and some aspects of hydrodesulfurization catalysis. Polyhedron 1986, 5, 323–340.

74

Müller, A.; Jaegermann, W.; Enemark, J. H. Disulfur complexes. Coord. Chem. Rev. 1982, 46, 245–280.

75

Müller, A.; Sarkar, S.; Bhattacharyya, R. G.; Pohl, S.; Dartmann, M. Directed synthesis of [Mo3S13]2−, an isolated cluster containing sulfur atoms in three different states of bonding. Angew. Chem., Int. Ed. 1978, 17, 535.

76

Lei, Y. G.; Yang, M. Q.; Hou, J. H.; Wang, F.; Cui, E. T.; Kong, C.; Min, S. X. Thiomolybdate [Mo3S13]2− nanocluster: A molecular mimic of MoS2 active sites for highly efficient photocatalytic hydrogen evolution. Chem. Commun. 2018, 54, 603–606.

77

Recatalá, D.; Llusar, R.; Gushchin, A. L.; Kozlova, E. A.; Laricheva, Y. A.; Abramov, P. A.; Sokolov, M. N.; Gomez, R.; Lana-Villarreal, T. Photogeneration of hydrogen from water by hybrid molybdenum sulfide clusters immobilized on titania. ChemSusChem 2015, 8, 148–157.

78

Hibble, S. J.; Rice, D. A.; Pickup, D. M.; Beer, M. P. Mo K-edge EXAFS and S K-edge absorption studies of the amorphous molybdenum sulfides MoS4.7, MoS3, and MoS3·nH2O (n ~ 2). Inorg. Chem. 1995, 34, 5109–5113.

79

Hibble, S. J.; Feaviour, M. R.; Almond, M. J. Chemical excision from amorphous MoS3; a quantitative EXAFS study. J. Chem. Soc., Dalton Trans. 2001, 6, 935–940.

80

Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K. C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G. et al. Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 2016, 15, 197–203.

81

Hung, N. T.; Yin, L. C.; Tran, P. D.; Saito, R. Simultaneous anionic and cationic redox in the Mo3S11 polymer electrode of a sodium-ion battery. J. Phys. Chem. C 2019, 123, 30856–30862.

82

Lee, C. H.; Lee, S.; Lee, Y. K.; Jung, Y. C.; Ko, Y. I.; Lee, D. C.; Joh, H. I. Understanding the origin of formation and active sites for thiomolybdate [Mo3S13]2− clusters as hydrogen evolution catalyst through the selective control of sulfur atoms. ACS Catal. 2018, 8, 5221–5227.

83

Zhou, G.; Shan Y.; Wang, L. L.; Hu, Y. Y.; Guo, J. H.; Hu, F. R.; Shen, J. C.; Gu, Y.; Cui, J. T.; Liu, L. L.; Wu, X. L. Photoinduced semiconductor-metal transition in ultrathin troilite FeS nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2021, 10, 399.

84

Bélanger, D.; Laperriére, G.; Marsan, B. The electrodeposition of amorphous molybdenum sulfide. J. Electroanal. Chem. 1993, 347, 165–183.

85

Bhattacharya, R. N.; Lee, C. Y.; Pollak, F. H.; Schleich, D. M. Optical study of amorphous MoS3: Determination of the fundamental energy gap. J. Non-Cryst. Solids 1987, 91, 235–242.

86

Merki, D.; Fierro, S.; Vrubel, H.; Hu, X. L. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2011, 2, 1262–1267.

87

Duong, T. M.; Nguyen, P. D.; Nguyen, A. D.; Le, L. T.; Nguyen, L. T.; Pham, H. V.; Tran, P. D. Insights into the electrochemical polymerization of [Mo3S13]2− generating amorphous molybdenum sulfide. Chem.—Eur. J. 2019, 25, 13676–13682.

88

Diemann, E.; Müller, A. Thio and seleno compounds of the transition metals with the do configuration. Coord. Chem. Rev. 1973, 10, 79–122.

89

Auborn, J. J.; Barberio, Y. L.; Hanson, K. J.; Schleich, D. M.; Martin, M. J. Amorphous molybdenum sulfide electrodes for nonaqueous electrochemical cells. J. Electrochem. Soc. 1987, 134, 580–586.

90

Walton, R. I.; Dent, A. J.; Hibble, S. J. In situ investigation of the thermal decomposition of ammonium tetrathiomolybdate using combined time-resolved X-ray absorption spectroscopy and X-ray diffraction. Chem. Mater. 1998, 10, 3737–3745.

91

Bulusheva, L. G.; Okotrub, A. V.; Kurenya, A. G.; Zhang, H. K.; Zhang, H. J.; Chen, X. H.; Song, H. H. Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries. Carbon 2011, 49, 4013–4023.

92

Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv. Mater. 2014, 26, 8163–8168.

93

Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

94

Oikawa, S.; Minamimoto, H.; Murakoshi, K. Reversible electrochemical tuning of optical property of single Au nano-bridged structure via electrochemical under potential deposition. Chem. Lett. 2017, 46, 1148–1150.

95

Vrubel, H.; Hu, X. L. Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 2013, 3, 2002–2011.

96

Nguyen, A. D.; Pham, P. T.; Dam, A. T.; Tran, P. D. New insights into the formation of amorphous molybdenum sulfide from a tetrathiomolybdate precursor. Vietnam J. Sci. Technol. Eng. 2019, 61, 9–13.

97

Truong, Q. D.; Kempaiah Devaraju, M.; Nguyen, D. N.; Gambe, Y.; Nayuki, K.; Sasaki, Y.; Tran, P. D.; Honma, I. Disulfide-bridged (Mo3S11) cluster polymer: Molecular dynamics and application as electrode material for a rechargeable magnesium battery. Nano Lett. 2016, 16, 5829–5835.

98

Subrahmanyam, K. S.; Malliakas, C. D.; Sarma, D.; Armatas, G. S.; Wu, J. S.; Kanatzidis, M. G. Ion-exchangeable molybdenum sulfide porous chalcogel: Gas adsorption and capture of iodine and mercury. J. Am. Chem. Soc. 2015, 137, 13943–13948.

99

Nai, J. W.; Kang, J. X.; Guo, L. Tailoring the shape of amorphous nanomaterials: Recent developments and applications. Sci. China Mater. 2015, 58, 44–59.

100

Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem.—Eur. J. 2014, 20, 11980–11992.

101

Kornienko, N.; Resasco, J.; Becknell, N.; Jiang, C. M.; Liu, Y. S.; Nie, K. Q.; Sun, X. H.; Guo, J. H.; Leone, S. R.; Yang, P. D. Operando spectroscopic analysis of an amorphous cobalt sulfide hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7448–7455.

102

Li, Y. M.; Xu, S. Y.; Wu, X. Y.; Yu, J. Z.; Wang, Y. S.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 71–77.

103

Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179–6187.

104

Shao, H. Y.; He, L. Q.; Lin, H. J.; Li, H. W. Progress and trends in magnesium-based materials for energy-storage research: A review. Energy Technol. 2018, 6, 445–458.

105

Chen, H. C.; Qin, Y. L.; Cao, H. J.; Song, X. X.; Huang, C. H.; Feng, H. B.; Zhao, X. S. Synthesis of amorphous nickel-cobalt-manganese hydroxides for supercapacitor-battery hybrid energy storage system. Energy Storage Mater. 2019, 17, 194–203.

106

Doan-Nguyen, V. V. T.; Subrahmanyam, K. S.; Butala, M. M.; Gerbec, J. A.; Islam, S. M.; Kanipe, K. N.; Wilson, C. E.; Balasubramanian, M.; Wiaderek, K. M.; Borkiewicz, O. J. et al. Molybdenum polysulfide chalcogels as high-capacity, anion-redox-driven electrode materials for Li-ion batteries. Chem. Mater. 2016, 28, 8357–8365.

107

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

108

Cao, Y. L.; Guo, Y. B.; Chen, Z. X.; Yang, W. F.; Li, K. R.; He, X. Y.; Li, J. M. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 2022, 92, 106689.

109

Li, J. M.; Chen, J. M.; Wang, H.; Xiao, X. All-MXene cotton-based supercapacitor-powered human body thermal management system. ChemElectroChem 2021, 8, 648–655.

110

Li, J. M.; Zhuang, Y. L.; Chen, J. M.; Li, B. X.; Wang, L. L.; Liu, S. J.; Zhao, Q. Two-dimensional materials for electrochromic applications. EnergyChem 2021, 3, 100060.

111

Jawad, A.; Liao, Z. W.; Zhou, Z. H.; Khan, A.; Wang, T.; Ifthikar, J.; Shahzad, A.; Chen, Z. L.; Chen, Z. Q. Fe-MoS4: An effective and stable LDH-based adsorbent for selective removal of heavy metals. ACS Appl. Mater. Interfaces 2017, 9, 28451–28463.

112

Liu, J. Y.; Zhang, S. Z.; Jiang, D. E.; Doherty, C. M.; Hill, A. J.; Cheng, C.; Park, H. B.; Lin, H. Q. Highly polar but amorphous polymers with robust membrane CO2/N2 separation performance. Joule 2019, 3, 1881–1894.

113

Yampolskii, Y.; Belov, N.; Alentiev, A. Perfluorinated polymers as materials of membranes for gas and vapor separation. J. Membr. Sci. 2020, 598, 117779.

114

Ishitsuka, M.; Hara, S.; Mukaida, M.; Haraya, K.; Kita, K.; Kato, K. Hydrogen separation from dry gas mixtures using a membrane module consisting of palladium-coated amorphous-alloy. Desalination 2008, 234, 293–299.

115

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

116

Tatin, A.; Bonin, J.; Robert, M. A case for electrofuels. ACS Energy Lett. 2016, 1, 1062–1064.

117

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

118

Ardo, S.; Rivas, D. F.; Modestino, M. A.; Greiving, V. S.; Abdi, F. F.; Alarcon Llado, E.; Artero, V.; Ayers, K.; Battaglia, C.; Becker, J. P. et al. Pathways to electrochemical solar-hydrogen technologies. Energy Environ. Sci. 2018, 11, 2768–2783.

119

Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

120

He, Q. Y.; Wang, L. L.; Yin, K.; Lou, S. L. Vertically aligned ultrathin 1T-WS2 nanosheets enhanced the electrocatalytic hydrogen evolution. Nanoscale Res. Lett. 2018, 13, 167.

121

Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano 2021, 15, 11014–11039.

122

Vrubel, H.; Merki, D.; Hu, X. L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles. Energy Environ. Sci. 2012, 5, 6136–6144.

123

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

124

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

125

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

126
Ye, C. L.; Peng, M.; Cui, T. T.; Tang, X. X.; Wang, D. S.; Jiao, M. L.; Miller, J. T.; Li, Y. D. Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. Nano Res., in press, https://doi.org/10.1007/s12274-021-3636-0.
DOI
127

Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698–702.

128

Garrett, B. R.; Polen, S. M.; Click, K. A.; He, M. F.; Huang, Z. J.; Hadad, C. M.; Wu, Y. Y. Tunable molecular MoS2 edge-site mimics for catalytic hydrogen production. Inorg. Chem. 2016, 55, 3960–3966.

129

Seo, B.; Joo, S. H. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction. Nano Converg. 2017, 4, 19.

130

Kiriya, D.; Lobaccaro, P.; Nyein, H. Y.; Taheri, P.; Hettick, M.; Shiraki, H.; Sutter-Fella, C. M.; Zhao, P. D.; Gao, W.; Maboudian, R. et al. General thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction. Nano Lett. 2016, 16, 4047–4053.

131

Yang, L. J.; Zhou, W. J.; Lu, J.; Hou, D. M.; Ke, Y. T.; Li, G. Q.; Tang, Z. H.; Kang, X. W.; Chen, S. W. Hierarchical spheres constructed by defect-rich MoS2/carbon nanosheets for efficient electrocatalytic hydrogen evolution. Nano Energy 2016, 22, 490–498.

132

Li, Y.; Yin, K.; Wang, L. L.; Lu, X. L.; Zhang, Y. Q.; Liu, Y. T.; Yan, D. F.; Song, Y. Z.; Luo, S. L. Engineering MoS2 nanomesh with holes and lattice defects for highly active hydrogen evolution reaction. Appl. Catal. B 2018, 239, 537–544.

133

Pham, C. V.; Zana, A.; Arenz, M.; Thiele, S. [Mo3S13]2− cluster decorated sulfur-doped reduced graphene oxide as noble metal-free catalyst for hydrogen evolution reaction in polymer electrolyte membrane electrolyzers. ChemElectroChem 2018, 5, 2672–2680.

134

Shang, Y. N.; Xu, X.; Gao, B. Y.; Ren, Z. F. Thiomolybdate [Mo3S13]2− nanoclusters anchored on reduced graphene oxide-carbon nanotube aerogels for efficient electrocatalytic hydrogen evolution. ACS Sustainable Chem. Eng. 2017, 5, 8908–8917.

135

Rajagopal, A.; Venter, F.; Jacob, T.; Petermann, L.; Rau, S.; Tschierlei, S.; Streb, C. Homogeneous visible light-driven hydrogen evolution by the molecular molybdenum sulfide model [Mo2S12]2−. Sustainable Energy Fuels 2019, 3, 92–95.

136

Ding, Q.; Song, B.; Xu, P.; Jin, S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem 2016, 1, 699–726.

137

Hellstern, T. R.; Kibsgaard, J.; Tsai, C.; Palm, D. W.; King, L. A.; Abild-Pedersen, F.; Jaramillo, T. F. Investigating catalyst-support interactions to improve the hydrogen evolution reaction activity of thiomolybdate [Mo3S13]2− nanoclusters. ACS Catal. 2017, 7, 7126–7130.

138

Holzapfel, P. K. R.; Buhler, M.; Escalera-López, D.; Bierling, M.; Speck, F. D.; Mayrhofer, K. J. J.; Cherevko, S.; Pham, C. V.; Thiele, S. Fabrication of a robust PEM water electrolyzer based on non-noble metal cathode catalyst: [Mo3S13]2− clusters anchored to N-doped carbon nanotubes. Small 2020, 16, 2003161.

139

Wang, L. L.; Liu, X.; Zhang, Q. F.; Zhou, G.; Pei, Y.; Chen, S. H.; Wang, J.; Rao, A. M.; Yang, H. G.; Lu, B. A. Quasi-one-dimensional Mo chains for efficient hydrogen evolution reaction. Nano Energy 2019, 61, 194–200.

140

Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

141

Cheng, X. L.; Wang, L. L.; Xie, L. B.; Sun, C.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Liu, S. J.; Zhao, Q. Defect-driven selective oxidation of MoS2 nanosheets with photothermal effect for photo-catalytic hydrogen evolution reaction. Chem. Eng. J. 2022, 439, 135757.

142
Liu, M. M. ; Li, H. X. ; Liu, S. J. ; Wang, L. L. ; Xie, L. B. ; Zhuang, Z. C. ; Sun, C. ; Wang, J. ; Tang, M. ; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-4267-9.
DOI
143
Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4158-0.
DOI
144

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

145

Ali, J.; Lei, W. L.; Shahzad, A.; Ifthikar, J.; Aregay, G. G.; Shahib, I. I.; Elkhlifi, Z.; Chen, Z. L.; Chen, Z. Q. Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency. Water Res. 2020, 181, 115862.

146

Wang, Z. P.; Pan, X. X.; Qian, S. Y.; Yang, G.; Du, F. L.; Yuan, X. The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord. Chem. Rev. 2021, 438, 213900.

147

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 134, e202200366.

148

Huang, Z. J.; Luo, W. J.; Ma, L.; Yu, M. Z.; Ren, X. D.; He, M. F.; Polen, S.; Click, K.; Garrett, B.; Lu, J. et al. Dimeric [Mo2S12]2– cluster: A molecular analogue of MoS2 edges for superior hydrogen-evolution electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 15181–15185.

149

Ronge, E.; Hildebrandt, S.; Grutza, M. L.; Klein, H.; Kurz, P.; Jooss, C. Structure of nanocrystalline, partially disordered MoS2+δ derived from HRTEM—An abundant material for efficient HER catalysis. Catalysts 2020, 10, 856.

150

Min, S. M.; Hou, J. H.; Lei, Y. G.; Liu, X. Y.; Li, Y. N.; Xue, Y.; Cui, E. T.; Yan, W. J.; Hai, W. X.; Wang, F. CoAl-layered double hydroxide nanosheets as an active matrix to anchor an amorphous MoSx catalyst for efficient visible light hydrogen evolution. Chem. Commun. 2018, 54, 3243–3246.

151

Kibsgaard, J.; Jaramillo, T. F.; Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 2014, 6, 248–253.

152

Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957–3971.

153

Seo, B.; Jung, G. Y.; Lee, S. J.; Baek, D. S.; Sa, Y. J.; Ban, H. W.; Son, J. S.; Park, K.; Kwak, S. K.; Joo, S. H. Monomeric MoS42−-derived polymeric chains with active molecular units for efficient hydrogen evolution reaction. ACS Catal. 2019, 10, 652–662.

154

Zhang, X. Q.; Cheng, X. B.; Zhang, Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 2016, 25, 967–984.

155

You, B.; Tang, M. T.; Tsai, C.; Abild-Pedersen, F.; Zheng, X. L.; Li, H. Enhancing electrocatalytic water splitting by strain engineering. Adv. Mater. 2019, 31, 1807001.

156

Wang, X. S.; Du, K. Z.; Wang, C.; Ma, L. X.; Zhao, B. L.; Yang, J. F.; Li, M. X.; Zhang, X. X.; Xue, M. Q.; Chen, J. T. Unique reversible conversion-type mechanism enhanced cathode performance in amorphous molybdenum polysulfide. ACS Appl. Mater. Interfaces 2017, 9, 38606–38611.

157

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

158

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

159

Wang, L. L.; Zhou, G.; Luo, H.; Zhang, Q. F.; Wang, J.; Zhao, C. W.; Rao, A. M.; Xu, B.; Lu, B. A. Enhancing catalytic activity of tungsten disulfide through topology. Appl. Catal. B 2019, 256, 117802.

160

Xie, L. B.; Wang, L. L.; Zhao, W. W.; Liu, S. J.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070.

161

Chen, J.; Tang, Y. M.; Wang, S. H.; Xie, L. B.; Chang, C.; Cheng, X. L.; Liu, M. M.; Wang, L. L.; Wang, L. H. Ingeniously designed Ni-Mo-S/ZnIn2S4 composite for multi-photocatalytic reaction systems. Chin. Chem. Lett. 2022, 33, 1468–1474.

162

Nguyen, D. N.; Nguyen, L. N.; Nguyen, P. D.; Thu, T. V.; Nguyen, A. D.; Tran, P. D. Crystallization of amorphous molybdenum sulfide induced by electron or laser beam and its effect on H2-evolving activities. J. Phys. Chem. C 2016, 120, 28789–28794.

163

Vrubel, H.; Moehl, T.; Grätzel, M.; Hu, X. L. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chem. Commun. 2013, 49, 8985–8987.

164

Laursen, A. B.; Vesborg, P. C. K.; Chorkendorff, I. A high-porosity carbon molybdenum sulphide composite with enhanced electrochemical hydrogen evolution and stability. Chem. Commun. 2013, 49, 4965–4967.

165

Li, Y. P.; Yu, Y. F.; Huang, Y. F.; Nielsen, R. A.; Goddard, W. A.; Li, Y.; Cao, L. Y. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 2015, 5, 448–455.

166

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

167

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

168

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

169

Deng, Y. Q.; Liu, Z.; Wang, A. Z.; Sun, D. H.; Chen, Y. K.; Yang, L. J.; Pang, J. B.; Li, H.; Li, H. D.; Liu, H. et al. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy 2019, 62, 338–347.

170

Sanchez Casalongue, H. G.; Benck, J. D.; Tsai, C.; Karlsson, R. K. B.; Kaya, S.; Ng, M. L.; Pettersson, L. G. M.; Abild-Pedersen, F.; Nørskov, J. K.; Ogasawara, H. et al. Operando characterization of an amorphous molybdenum sulfide nanoparticle catalyst during the hydrogen evolution reaction. J. Phys. Chem. C 2014, 118, 29252–29259.

171

Lee, S. C.; Benck, J. D.; Tsai, C.; Park, J.; Koh, A. L.; Abild-Pedersen, F.; Jaramillo, T. F.; Sinclair, R. Chemical and phase evolution of amorphous molybdenum sulfide catalysts for electrochemical hydrogen production. ACS Nano 2016, 10, 624–632.

172

Baloglou, A.; Plattner, M.; Ončák, M.; Grutza, M. L.; Kurz, P.; Beyer, M. K. [Mo3S13]2− as a model system for hydrogen evolution catalysis by MoSx:Probing protonation sites in the gas phase by infrared multiple photon dissociation spectroscopy. Angew. Chem., Int. Ed. 2021, 60, 5074–5077.

173

Hibble, S. J.; Feaviour, M. R. An in situ structural study of the thermal decomposition reactions of the ammonium thiomolybdates, (NH4)2Mo2S12·2H2O and (NH4)2Mo3S13·2H2O. J. Mater. Chem. 2001, 11, 2607–2614.

174

Diemann, E.; Müller, A.; Aymonino, P. J. Thermal decomposition of (NH4)2[Mo3S(S2)6nH2O. Z. Anorg. Allg. Chem. 1981, 479, 191–198.

175

Huntley, D. R.; Parham, T. G.; Merrill, R. P.; Sienko, M. J. An EXAFS study of the thermal decomposition of molybdenum trisulfide. Inorg. Chem. 1983, 22, 4144–4146.

176

Paracchino, A.; Mathews, N.; Hisatomi, T.; Stefik, M.; Tilley, S. D.; Grätzel, M. Ultrathin films on copper(I) oxidewater splitting photocathodes: A study on performance and stability. Energy Environ. Sci. 2012, 5, 8673–8681.

177

Wang, B.; Biesold, G. M.; Zhang, M.; Lin, Z. Q. Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications. Chem. Soc. Rev. 2021, 50, 6914–6949.

178

Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X. L. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059.

179

Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456–461.

180

Tilley, S. D.; Schreier, M.; Azevedo, J.; Stefik, M.; Graetzel, M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv. Funct. Mater. 2014, 24, 303–311.

181

Zang, G. L.; Sheng, G. P.; Shi, C.; Wang, Y. K.; Li, W. W.; Yu, H. Q. A bio-photoelectrochemical cell with a MoS3-modified silicon nanowire photocathode for hydrogen and electricity production. Energy Environ. Sci. 2014, 7, 3033–3039.

182

Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.

183

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

184

Bonnick, P.; Muldoon, J. A trip to Oz and a peak behind the curtain of magnesium batteries. Adv. Funct. Mater. 2020, 30, 1910510.

185

Nayak, P. K.; Yang, L. T.; Brehm, W.; Adelhelm, P. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102–120.

186

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

187

Yu, J.; Xiao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Guo, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

188

Sun, Y. M.; Liu, N. A.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.

189

Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S. A review of lithium and non-lithium based solid state batteries. J. Power Sources 2015, 282, 299–322.

190

Li, Q.; Chen, J. E.; Fan, L.; Kong, X. Q.; Lu, Y. Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016, 1, 18–42.

191

Mukhopadhyay, A.; Sheldon, B. W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 2014, 63, 58–116.

192

Sun, C.; Liu, M. M.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Li, J. M.; Liu, S. J.; Yan, D. F.; Zhao, Q. Revisiting lithium-storage mechanisms of molybdenum disulfide. Chin. Chem. Lett. 2022, 33, 1779–1797.

193

Truong, Q. D.; Yin, L. C.; Hung, N. T.; Nguyen, D. N.; Gambe, Y.; Nayuki, K.; Sasaki, Y.; Kobayashi, H.; Saito, R.; Tran, P. D. et al. Anionic redox in a-(Mo3S11)n polymer cathode for all-solid-state Li-ion battery. Electrochim. Acta 2020, 332, 135218.

194

Zhang, Q.; Ding, Z. G.; Liu, G. Z.; Wan, H. L.; Mwizerwa, J. P.; Wu, J. H.; Yao, X. Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2019, 23, 168–180.

195

Wang, T. Y.; Su, D. W.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237.

196

Zhang, Z. J.; Wang, Y. X.; Chou, S. L.; Li, H. J.; Liu, H. K.; Wang, J. Z. Rapid synthesis of α-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries. J. Power Sources 2015, 280, 107–113.

197

Ye, H. L.; Wang, L.; Deng, S.; Zeng, X. Q.; Nie, K. Q.; Duchesne, P. N.; Wang, B.; Liu, S. M.; Zhou, J. H.; Zhao, F. P. et al. Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Adv. Energy Mater. 2017, 7, 1601602.

198

Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.

199

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

200

Zhao, F. P.; Han, N.; Huang, W. J.; Li, J. J.; Ye, H. L.; Chen, F. J.; Li, Y. G. Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 21754–21759.

201

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.

202

Xin, S.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A high-energy room-temperature sodium-sulfur battery. Adv. Mater. 2014, 26, 1261–1265.

203

Fan, L.; Ma, R. F.; Yang, Y. H.; Chen, S. H.; Lu, B. A. Covalent sulfur for advanced room temperature sodium-sulfur batteries. Nano Energy 2016, 28, 304–310.

204

Manthiram, A.; Yu, X. W. Ambient temperature sodium-sulfur batteries. Small 2015, 11, 2108–2114.

205

Wei, S. Y.; Xu, S. M.; Agrawral, A.; Choudhury, S.; Lu, Y. Y.; Tu, Z. Y.; Ma, L.; Archer, L. A. A stable room-temperature sodium-sulfur battery. Nat. Commun. 2016, 7, 11722.

206

Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.

207

Pramudita, J. C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An initial review of the status of electrode materials for potassium-ion batteries. Adv. Energy Mater. 2017, 1602911.

208

Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.

209

Ding, S. S.; Zhou, B. X.; Chen, C. M.; Huang, Z.; Li, P. C.; Wang, S. Y.; Cao, G. Z.; Zhang, M. Sulfur-rich (NH4)2Mo3S13 as a highly reversible anode for sodium/potassium-ion batteries. ACS Nano 2020, 14, 9626–9636.

210

Mohtadi, R.; Matsui, M.; Arthur, T. S.; Hwang, S. J. Magnesium borohydride: From hydrogen storage to magnesium battery. Angew. Chem., Int. Ed. 2012, 51, 9780–9783.

211

Meng, Z.; Foix, D.; Brun, N.; Dedryvère, R.; Stievano, L.; Morcrette, M.; Berthelot, R. Alloys to replace Mg anodes in efficient and practical Mg-ion/sulfur batteries. ACS Energy Lett. 2019, 4, 2040–2044.

212

Huie, M. M.; Bock, D. C.; Takeuchi, E. S.; Marschilok, A. C.; Takeuchi, K. J. Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 2015, 287, 15–27.

213

Yoo, H. D.; Liang, Y. L.; Dong, H.; Lin, J. H.; Wang, H.; Liu, Y. S.; Ma, L.; Wu, T. P.; Li, Y. F.; Ru, Q. et al. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat. Commun. 2017, 8, 339.

214

Wu, N.; Yang, Z. Z.; Yao, H. R.; Yin, Y. X.; Gu, L.; Guo, Y. G. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew. Chem., Int. Ed. 2015, 54, 5757–5761.

215

Cho, J. H.; Aykol, M.; Kim, S.; Ha, J. H.; Wolverton, C.; Chung, K. Y.; Kim, K. B.; Cho, B. W. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 2014, 136, 16116–16119.

216

Yagi, S.; Ichitsubo, T.; Shirai, Y.; Yanai, S.; Doi, T.; Murase, K.; Matsubara, E. A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2014, 2, 1144–1149.

217

Ru, J.; Wang, X. M.; Wang, F. B.; Cui, X. L.; Du, X. Z.; Lu, X. Q. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ecotoxicol. Environ. Saf. 2021, 208, 111577.

218

Xu, J.; Cao, Z.; Zhang, Y. L.; Yuan, Z. L.; Lou, Z. M.; Xu, X. H.; Wang, X. K. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018, 195, 351–364.

219

Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712.

220

Naushad, M.; Ahamad, T.; Alothman, Z. A.; Al-Muhtaseb, A. H. Green and eco-friendly nanocomposite for the removal of toxic Hg(II) metal ion from aqueous environment: Adsorption kinetics & isotherm modelling. J. Mol. Liq. 2019, 279, 1–8.

221

Cui, L. M.; Wang, Y. G.; Gao, L.; Hu, L. H.; Yan, L. G.; Wei, Q.; Du, B. Edta functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10.

222

Chandra, V.; Kim, K. S. Highly selective adsorption of Hg2+ by a polypyrrole-reduced graphene oxide composite. Chem. Commun. 2011, 47, 3942–3944.

223

Griffiths, C.; Klemick, H.; Massey, M.; Moore, C.; Newbold, S.; Simpson, D.; Walsh, P.; Wheeler, W. U. S. environmental protection agency valuation of surface water quality improvements. Rev. Environ. Econ. Policy 2012, 6, 130–146.

224

Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103.

225

Li, H.; Wang, K. C.; Sun, Y. J.; Lollar, C. T.; Li, J. L.; Zhou, H. C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121.

226

Wang, X. R.; Chi, C. L.; Zhang, K.; Qian, Y. H.; Gupta, K. M.; Kang, Z. X.; Jiang, J. W.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460.

227

Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal-organic framework materials for gas separation. Chem 2020, 6, 337–363.

228

Hüsing, N.; Schubert, U. Aerogels—Airy materials: Chemistry, structure, and properties. Angew. Chem., Int. Ed. 1998, 37, 22–45.

DOI
229

Bi, H. C.; Yin, Z. Y.; Cao, X. H.; Xie, X.; Tan, C. L.; Huang, X.; Chen, B.; Chen, F. T.; Yang, Q. L.; Bu, X. Y. et al. Carbon fiber aerogel made from raw cotton: A novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 2013, 25, 5916–5921.

230

Riley, B. J.; Chun, J.; Ryan, J. V.; Matyáš, J.; Li, X. S.; Matson, D. W.; Sundaram, S. K.; Strachan, D. M.; Vienna, J. D. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine. RSC Adv. 2011, 1, 1704–1715.

231

Riley, B. J.; Chun, J.; Um, W.; Lepry, W. C.; Matyas, J.; Olszta, M. J.; Li, X. H.; Polychronopoulou, K.; Kanatzidis, M. G. Chalcogen-based aerogels as sorbents for radionuclide remediation. Environ. Sci. Technol. 2013, 47, 7540–7547.

232

Bayer, B. C.; Kaindl, R.; Monazam, M. R. A.; Susi, T.; Kotakoski, J.; Gupta, T.; Eder, D.; Waldhauser, W.; Meyer, J. C. Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 2018, 12, 8758–8769.

233

Zhang, J. X.; Feng, P. Y.; Bu, X. H.; Wu, T. Atomically precise metal chalcogenide supertetrahedral clusters: Frameworks to molecules, and structure to function. Natl. Sci. Rev. 2022, 9, nwab076.

234

Gao, C. C.; Min, X.; Fang, M. H.; Tao, T. Y.; Zheng, X. H.; Liu, Y. G.; Wu, X. W.; Huang, Z. H. Innovative materials science via machine learning. Adv. Funct. Mater. 2021, 32, 2108044.

Publication history
Copyright
Acknowledgements

Publication history

Received: 24 April 2022
Revised: 04 May 2022
Accepted: 05 May 2022
Published: 08 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Funds for Distinguished Young Scientists (No. 61825503), the National Natural Science Foundation of China (Nos. 51902101, 61775101, and 61804082), the Youth Natural Science Foundation of Hunan Province (No. 2021JJ40044), Natural Science Foundation of Jiangsu Province (No. BK20201381), and Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144).

Return