Journal Home > Volume 15 , Issue 9

The addition and substitution reactions across a variety of alkenes and alkynes have been playing an important role in organic synthesis. In particular, catalyses enabled by homogeneous complexes as well as heterogenous nanomaterials have been much received attentions over decades. Along with these blooming progresses in these fields, single-atom site catalysts (SACs) exhibit outstanding performances in terms of reactivity and selectivity, thus providing a new powerful strategy to upgrade these bulk chemicals. Herein, we summarize the reactions of alkenes and alkynes enabled by SACs, in which catalytic hydrogenation, hydrosilylation, hydroboration, hydroformylation, and cross coupling have been included. Moreover, preparations and fine structures of the corresponding SACs have been described, therefore providing a better understanding and overview to address the origin of catalytic activity in the reported examples.


menu
Abstract
Full text
Outline
About this article

Transforming bulk alkenes and alkynes into fine chemicals enabled by single-atom site catalysis

Show Author's information Ping Guo1Hongyuan Liu1Jie Zhao1,2( )
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

The addition and substitution reactions across a variety of alkenes and alkynes have been playing an important role in organic synthesis. In particular, catalyses enabled by homogeneous complexes as well as heterogenous nanomaterials have been much received attentions over decades. Along with these blooming progresses in these fields, single-atom site catalysts (SACs) exhibit outstanding performances in terms of reactivity and selectivity, thus providing a new powerful strategy to upgrade these bulk chemicals. Herein, we summarize the reactions of alkenes and alkynes enabled by SACs, in which catalytic hydrogenation, hydrosilylation, hydroboration, hydroformylation, and cross coupling have been included. Moreover, preparations and fine structures of the corresponding SACs have been described, therefore providing a better understanding and overview to address the origin of catalytic activity in the reported examples.

Keywords: alkynes, single-atom site catalysts (SACs), alkenes

References(57)

1

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

2

Wang, Y.; Zheng X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

3

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d Orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

4

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

5

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

6

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

7

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

8
Hou, Z. Q.; Dai, L. Y.; Deng, J. G.; Zhao, G. F.; Jing, L.; Wang, Y. S.; Yu, X. H.; Gao, R. Y.; Tian, X. R.; Dai, H. X. et al. Electronically engineering water resistance in methane combustion with an atomically dispersed tungsten on PdO Catalyst. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202201655.
9

Chen, Y. Z.; Sun, H. L.; Gates, B. C. Prototype atomically dispersed supported metal catalysts: Iridium and platinum. Small 2021, 17, 2004665.

10

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

11

Zhang, R. X.; Chen, Y.; Ding, M. H.; Zhao, J. Heterogeneous Cu catalyst in organic transformations. Nano Res. 2022, 15, 2810–2833.

12

Han, A. L.; Zhang, Z. D.; Yang, J. R.; Wang, D. S.; Li, Y. D. Carbon-supported single-atom catalysts for formic acid oxidation and oxygen reduction reactions. Small 2021, 17, e2004500.

13

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

14

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

15

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

16

Wei, H. H.; Li, X. Y.; Deng, B. H.; Lang, J. L.; Huang, Y.; Hua, X. Y.; Qiao, Y. D.; Ge, B. H.; Ge, J.; Wu, H. Rapid synthesis of Pd single-atom/cluster as highly active catalysts for Suzuki coupling reactions. Chin. J. Catal. 2022, 43, 1058–1065.

17

Zhao, J.; Ji, S. F.; Guo, C. X.; Li, H. J.; Dong, J. C.; Guo, P.; Wang, D. S.; Li, Y. D.; Toste, F. D. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 2021, 4, 523–531.

18

Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

19

Rivera-Cárcamo, C.; Gerber, I. C.; del Rosal, I.; Guicheret, B.; Contreras, R. C.; Vanoye, L.; Favre-Réguillon, A.; Machado, B. F.; Audevard, J.; de Bellefon, C. et al. Control of the single atom/nanoparticle ratio in Pd/C catalysts to optimize the cooperative hydrogenation of alkenes. Catal. Sci. Technol. 2021, 11, 984–999.

20

Cui, X. J.; Junge, K.; Dai, X. C.; Kreyenschulte, C.; Pohl, M. M.; Wohlrab, S.; Shi, F.; Brückner, A.; Beller, M. Synthesis of single atom based heterogeneous platinum catalysts: High selectivity and activity for hydrosilylation reactions. ACS Cent. Sci. 2017, 3, 580–585.

21

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-Markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

22

Zhu, Y. Q.; Cao, T.; Cao, C. B.; Luo, J.; Chen, W. X.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Han, Y. H.; Li, Z. et al. One-pot pyrolysis to N-doped graphene with high-density Pt single atomic sites as heterogeneous catalyst for alkene hydrosilylation. ACS Catal. 2018, 8, 10004–10011.

23

Chen, L. X.; Sterbinsky, G. E.; Tait, S. L. Synthesis of platinum single-site centers through metal-ligand self-assembly on powdered metal oxide supports. J. Catal. 2018, 365, 303–312.

24

Chen, L. X.; Ali, I. S.; Sterbinsky, G. E.; Gamler, J. T. L.; Skrabalak, S. E.; Tait, S. L. Alkene hydrosilylation on oxide-supported Pt-ligand single-site catalysts. ChemCatChem 2019, 11, 2843–2854.

25

Liu, K. R.; Badamdorj, B.; Yang, F.; Janik, M. J.; Antonietti, M. Accelerated anti-Markovnikov alkene hydrosilylation with humic-acid-supported electron-deficient platinum single atoms. Angew. Chem., Int. Ed. 2021, 60, 24220–24226.

26
Yu, Z. H.; Song, Z. J.; Lu, C. S.; Bai, Y.; Li, J. Y.; Liu, J.; Liu, P.; Peng, J. J. The synthesis of heterogenous Co-MOFs and application in the catalytic hydrosilylation of alkenes. Appl. Organomet. Chem., in press, https://doi.org/10.1002/aoc.6648.
27

Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

28

Lang, R.; Li, T. B.; Matsumura, D.; Miao, S.; Ren, Y. J.; Cui, Y. T.; Tan, Y.; Qiao, B. T.; Li, L.; Wang, A. Q. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem., Int. Ed. 2016, 55, 16054–16058.

29

Amsler, J.; Sarma, B. B.; Agostini, G.; Prieto, G.; Plessow, P. N.; Studt, F. Prospects of heterogeneous hydroformylation with supported single atom catalysts. J. Am. Chem. Soc. 2020, 142, 5087–5096.

30

Li, T. B.; Chen, F.; Lang, R.; Wang, H.; Su, Y.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Styrene hydroformylation with in situ hydrogen: Regioselectivity control by coupling with the low-temperature water–gas shift reaction. Angew. Chem., Int. Ed. 2020, 59, 7430–7434.

31

Zhao, K.; Wang, H. L.; Wang, X. Z.; Li, T.; Dai, X. C.; Zhang, L. P.; Cui, X. J.; Shi, F. Confinement of atomically dispersed Rh catalysts within porous monophosphine polymers for regioselective hydroformylation of alkenes. J. Catal. 2021, 401, 321–330.

32

Gao, P.; Liang, G. F.; Ru, T.; Liu, X. Y.; Qi, H. F.; Wang, A. Q.; Chen, F. E. Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nat. Commun. 2021, 12, 4698.

33

Hikazudani, S.; Mochida, T.; Yano, K.; Nagaoka, K.; Ishihara, T.; Takita, Y. Mono-atomically dispersed Pd on TiO2 as a catalyst for epoxidation of light olefins at low temperatures in the presence of H2 and O2. Catal. Commun. 2011, 12, 1396–1400.

34

Chen, X.; Zou, Y.; Zhang, M. K.; Gou, W. Y.; Zhang, S.; Qu, Y. Q. Multiscale porous single-atom Co catalysts for epoxidation with O2. J. Mater. Chem. A 2022, 10, 6016–6022.

35

Li, W. H.; Li, C. Y.; Xiong, H. Y.; Liu, Y.; Huang, W. Y.; Ji, G. J.; Jiang, Z.; Tang, H. T.; Pan, Y. M.; Ding, Y. J. Constructing mononuclear palladium catalysts by precoordination/solvothermal polymerization: Recyclable catalyst for regioselective oxidative heck reactions. Angew. Chem., Int. Ed. 2019, 58, 2448–2453.

36

Wen, J. W.; Yang, X. T.; Sun, Z. Z.; Yang, J. J.; Han, P.; Liu, Q. X.; Dong, H. Y.; Gu, M.; Huang, L. M.; Wang, H. Biomimetic photocatalytic sulfonation of alkenes to access β-ketosulfones with single-atom iron site. Green Chem. 2020, 22, 230–237.

37

Guo, T. L.; Tang, N. F.; Lin, F.; Shang, Q. H.; Chen, S.; Qi, H. F.; Pan, X. L.; Wu, C. T.; Xu, G. L.; Zhang, J. et al. High-loading single-atom copper catalyst supported on coordinatively unsaturated Al2O3 for selective synthesis of homoallylboronates. ChemSusChem 2020, 13, 3115–3121.

38

Quan, Y. L.; Yu, R. H.; Zhu, J. X.; Guan, A. X.; Lv, X. M.; Yang, C.; Li, S.; Wu, J. S.; Zheng, G. F. Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. J. Colloid Interface Sci. 2021, 601, 378–384.

39

Xu, Q.; Guo, C. X.; Li, B. B.; Zhang, Z. D.; Qiu, Y. J.; Tian, S. B.; Zheng, L. R.; Gu, L.; Yan, W. S.; Wang, D. S. et al. Al3+ dopants induced Mg2+ vacancies stabilizing single-atom Cu catalyst for efficient free-radical hydrophosphinylation of alkenes. J. Am. Chem. Soc. 2022, 144, 4321–4326.

40

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber. A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

41

Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.

42

Pei, G. X.; Liu, X. Y.; Yang, X. F.; Zhang, L. L.; Wang, A. Q.; Li, L.; Wang, H.; Wang, X. D.; Zhang, T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal. 2017, 7, 1491–1500.

43

Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.

44

Feng, Q. C.; Zhao, S.; Xu, Q.; Chen, W. X.; Tian, S. B.; Wang, Y.; Yan, W. S.; Luo, J.; Wang, D. S.; Li, Y. D. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 2019, 31, 1901024.

45

Guo, Y. L.; Qi, H. F.; Su, Y.; Jiang, Q. K.; Cui, Y. T.; Li, L.; Qiao, B. T. High performance of single-atom catalyst Pd1/MgO for semi-hydrogenation of acetylene to ethylene in excess ethylene. ChemNanoMat 2021, 7, 526–529.

46

He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

47

Liu, Y.; Guo, W.; Li, X. J.; Jiang, P.; Zhang, N.; Liang, M. H. Copper single-atom-covered Pt nanoparticles for selective hydrogenation of phenylacetylene. ACS Appl. Nano Mater. 2021, 4, 5292–5300.

48

Zhang, X. G.; Lin, H.; Zhang, J.; Qiu, Y. J.; Zhang, Z. D.; Xu, Q.; Meng, G.; Yan, W. S.; Gu, L.; Zheng, L. R. et al. Decreasing the coordinated N atoms in a single-atom Cu catalyst to achieve selective transfer hydrogenation of alkynes. Chem. Sci. 2021, 12, 14599–14605.

49
Zhao, L. M.; Qin, X. T.; Zhang, X. R.; Cai, X. B.; Huang, F.; Jia, Z. M.; Diao, J. Y.; Xiao, D. Q.; Jiang, Z.; Lu, R. F. et al. A magnetically separable Pd single-atom catalyst for efficient selective hydrogenation of phenylacetylene. Adv. Mater., in press, https://doi.org/10.1002/adma.202110455.
50

Ren, S. C.; Ye, B. C.; Li, S. Y.; Pang, L. P.; Pan, Y. M.; Tang, H. T. Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Res. 2022, 15, 1500–1508.

51

Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu–O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725–737.

52

Li, W. H.; Yang, J. R.; Jing, H. Y.; Zhang, J.; Wang, Y.; Li, J.; Zhao, J.; Wang, D. S.; Li, Y. D. Creating high regioselectivity by electronic metal–support interaction of a single-atomic-site catalyst. J. Am. Chem. Soc. 2021, 143, 15453–15461.

53

Zhang, X. Y.; Sun, Z. C.; Wang, B.; Tang, Y.; Nguyen, L.; Li, Y. T.; Tao, F. F. C–C coupling on single-atom-based heterogeneous catalyst. J. Am. Chem. Soc. 2018, 140, 954–962.

54

Yang, P.; Zuo, S. W.; Zhang, F. T.; Yu, B.; Guo, S. E.; Yu, X. X.; Zhao, Y. F.; Zhang, J.; Liu, Z. M. Carbon nitride-based single-atom Cu catalysts for highly efficient carboxylation of alkynes with atmospheric CO2. Ind. Eng. Chem. Res. 2020, 59, 7327–7335.

55

Zhang, J.; Wu, X.; Cheong, W. C.; Chen, W. X.; Lin, R.; Li, J.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C. et al. Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat. Commun. 2018, 9, 1002.

56

Huang, W. Y.; Wang, G. Q.; Li, W. H.; Li, T. T.; Ji, G. J.; Ren, S. C.; Jiang, M.; Yan, L.; Tang, H. T.; Pan, Y. M. et al. Porous ligand creates new reaction route: Bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 2020, 6, 2300–2313.

57

Zhang, J.; Wang, M.; Gao, Z. R.; Qin, X. T.; Xu, Y.; Wang, Z. H.; Zhou, W.; Ma, D. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108–5115.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 April 2022
Revised: 28 April 2022
Accepted: 01 May 2022
Published: 28 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

J. Z. acknowledges Project supported by Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03) and the Program of Introducing Talents of Discipline to Universities (No. B16017).

Return