Journal Home > Volume 15 , Issue 9

Hypoxia is a huge barrier for the development of photodynamic therapy (PDT). Chemodynamic therapy (CDT) could provide a possible solution to this dilemma. In this work, a controlled Schiff-base reaction was conducted between amido groups on the surface of carbon dots (CDs) and aldehyde groups on aldehyde-modified cellulose nanocrystals (mCNCs) as well as aldehyde-mCNCs decorated with Fe3O4 nanoparticles. In this process, the mCNCs not only prevent the agglomeration of Fe3O4 but also form hydrogels with CDs. The CDs act as both photothermal agent and photosensitizer. The hypoxia could be effectively relieved through the Fenton reaction due to the addition of Fe3O4, and the ·OH produced in the reaction further induces CDT and enhances tumor therapy efficiency. The therapy performance was further verified through in vitro cell experiments and in vivo animal experiments. This convenient method provides inspirations for the design and preparation of advanced biomaterials with multiple functions for cancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-step nanoarchitectonics of a multiple functional hydrogel based on cellulose nanocrystals for effective tumor therapy

Show Author's information Tianxing Chen1,2,§Tengteng Yao2,3,§Hui Pan1Hui Peng4Andrew K. Whittaker4Yao Li1Shenmin Zhu1( )Zhaoyang Wang2( )
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200092, China
Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia

§ Tianxing Chen and Tengteng Yao contributed equally to this work.

Abstract

Hypoxia is a huge barrier for the development of photodynamic therapy (PDT). Chemodynamic therapy (CDT) could provide a possible solution to this dilemma. In this work, a controlled Schiff-base reaction was conducted between amido groups on the surface of carbon dots (CDs) and aldehyde groups on aldehyde-modified cellulose nanocrystals (mCNCs) as well as aldehyde-mCNCs decorated with Fe3O4 nanoparticles. In this process, the mCNCs not only prevent the agglomeration of Fe3O4 but also form hydrogels with CDs. The CDs act as both photothermal agent and photosensitizer. The hypoxia could be effectively relieved through the Fenton reaction due to the addition of Fe3O4, and the ·OH produced in the reaction further induces CDT and enhances tumor therapy efficiency. The therapy performance was further verified through in vitro cell experiments and in vivo animal experiments. This convenient method provides inspirations for the design and preparation of advanced biomaterials with multiple functions for cancer therapy.

Keywords: carbon dots, magnetic nanoparticles, tumor therapy, cellulose nanocrystals, injectable hydrogel

References(42)

1

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 2018, 68, 394–424.

2

Sun, S.; Chen, J. Q.; Jiang, K.; Tang, Z. D.; Wang, Y. H.; Li, Z. J.; Liu, C. B.; Wu, A. G.; Lin, H. W. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS Appl. Mater. Interfaces 2019, 11, 5791–5803.

3

Shao, J. D.; Ruan, C. S.; Xie, H. H.; Li, Z. B.; Wang, H. Y.; Chu, P. K.; Yu, X. F. Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. (Weinh.) 2018, 5, 1700848.

4

Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

5

Kuo, W. S.; Shen, X. C.; Chang, C. Y.; Kao, H. F.; Lin, S. H.; Wang, J. Y.; Wu, P. C. Multiplexed graphene quantum dots with excitation-wavelength-independent photoluminescence, as two-photon probes, and in ultraviolet-near infrared bioimaging. ACS Nano 2020, 14, 11502–11509.

6

Lai, Y.; Zhu, Y. Y.; Xu, Z. A.; Hu, X. L.; Saeed, M.; Yu, H. J.; Chen, X. X.; Liu, J.; Zhang, W. Engineering versatile nanoparticles for near-infrared light-tunable drug release and photothermal degradation of amyloid β. Adv. Funct. Mater. 2020, 30, 1908473.

7

Yang, J. P.; Shen, D. K.; Zhou, L.; Li, W.; Li, X. M.; Yao, C.; Wang, R.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Spatially confined fabrication of core–shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem. Mater. 2013, 25, 3030–3037.

8

Miao, H.; Shen, R. Q.; Zhang, W. H.; Lin, Z. F.; Wang, H.; Yang, L. K.; Liu, X. Y.; Lin, N. B. Near-infrared light triggered silk fibroin scaffold for photothermal therapy and tissue repair of bone tumors. Adv. Funct. Mater. 2021, 31, 2007188.

9

Zhu, J. Z.; Xiao, T. T.; Zhang, J. L.; Che, H. L.; Shi, Y. X.; Shi, X. Y.; van Hest, J. C. M. Surface-charge-switchable nanoclusters for magnetic resonance imaging-guided and glutathione depletion-enhanced photodynamic therapy. ACS Nano 2020, 14, 11225–11237.

10

Liang, K. C.; Sun, H. T.; Yang, Z. B.; Yu, H. Z.; Shen, J.; Wang, X. L.; Chen, H. R. Breaking the redox homeostasis: An albumin-based multifunctional nanoagent for GSH depletion-assisted chemo-/chemodynamic combination therapy. Adv. Funct. Mater. 2021, 31, 2100355.

11

Cheng, Y.; Wen, C.; Sun, Y. Q.; Yu, H.; Yin, X. B. Mixed-metal MOF-derived hollow porous nanocomposite for trimodality imaging guided reactive oxygen species-augmented synergistic therapy. Adv. Funct. Mater. 2021, 31, 2104378.

12

Ding, J. J.; Lu, G. H.; Nie, W. D.; Huang, L. L.; Zhang, Y. H.; Fan, W. L.; Wu, G. H.; Liu, H. L.; Xie, H. Y. Self-activatable photo-extracellular vesicle for synergistic trimodal anticancer therapy. Adv. Mater. 2021, 33, 2005562.

13

Mou, J.; Lin, T. Q.; Huang, F. Q.; Chen, H. R.; Shi, J. L. Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. Biomaterials 2016, 84, 13–24.

14

Jiang, R. M.; Dai, J.; Dong, X. Q.; Wang, Q.; Meng, Z. J.; Guo, J. J.; Yu, Y. J.; Wang, S. X.; Xia, F.; Zhao, Z. J. et al. Improving image-guided surgical and immunological tumor treatment efficacy by photothermal and photodynamic therapies based on a multifunctional NIR AIEgen. Adv. Mater. 2021, 33, 2101158.

15

Yang, D.; Yang, G. X.; Gai, S. L.; He, F.; Lv, R. C.; Dai, Y. L.; Yang, P. P. Imaging-guided and light-triggered chemo-/photodynamic/photothermal therapy based on Gd(III) chelated mesoporous silica hybrid spheres. ACS Biomater. Sci. Eng. 2016, 2, 2058–2071.

16

Qiao, B.; Luo, Y. L.; Cheng, H. B.; Ren, J. L.; Cao, J.; Yang, C.; Liang, B.; Yang, A. Y.; Yuan, X.; Li, J. R. et al. Artificial nanotargeted cells with stable photothermal performance for multimodal imaging-guided tumor-specific therapy. ACS Nano 2020, 14, 12652–12667.

17

Yang, J. X.; Hou, M. F.; Sun, W. S.; Wu, Q. H.; Xu, J.; Xiong, L. Q.; Chai, Y. M.; Liu, Y. X.; Yu, M. H.; Wang, H. L. et al. Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv. Sci. (Weinh.) 2020, 7, 2001088.

18

Xing, R. R.; Liu, K.; Jiao, T. F.; Zhang, N.; Ma, K.; Zhang, R. Y.; Zou, Q. L.; Ma, G. H.; Yan, X. H. An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv. Mater. 2016, 28, 3669–3676.

19

Li, C.; Zheng, X. C.; Chen, W. Z.; Ji, S. L.; Yuan, Y.; Jiang, X. Q. Tumor microenvironment-regulated and reported nanoparticles for overcoming the self-confinement of multiple photodynamic therapy. Nano Lett. 2020, 20, 6526–6534.

20

Huang, J. C.; He, B. Z.; Zhang, Z. J.; Li, Y. M.; Kang, M. M.; Wang, Y. W.; Li, K.; Wang, D.; Tang, B. Z. Aggregation-induced emission luminogens married to 2D black phosphorus nanosheets for highly efficient multimodal theranostics. Adv. Mater. 2020, 32, 2003382.

21

Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566–13638.

22

Yang, K. K.; Yu, G. C.; Yang, Z. Q.; Yue, L. D.; Zhang, X. J.; Sun, C.; Wei, J. W.; Rao, L.; Chen, X. Y.; Wang, R. B. Supramolecular polymerization-induced nanoassemblies for self-augmented cascade chemotherapy and chemodynamic therapy of tumor. Angew. Chem., Int. Ed. 2021, 60, 17570–17578.

23

Tian, Q. W.; Xue, F. F.; Wang, Y. R.; Cheng, Y. Y.; An, L.; Yang, S. P.; Chen, X. Y.; Huang, G. Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162.

24

Shi, L. N.; Wang, Y. J.; Zhang, C.; Zhao, Y.; Lu, C.; Yin, B. L.; Yang, Y.; Gong, X. Y.; Teng, L. L.; Liu, Y. L. et al. An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 9562–9572.

25

He, T.; Yuan, Y. Y.; Jiang, C.; Blum, N. T.; He, J.; Huang, P.; Lin, J. Light-triggered transformable ferrous ion delivery system for photothermal primed chemodynamic therapy. Angew. Chem., Int. Ed. 2021, 60, 6047–6054.

26

Sun, P. P.; Deng, Q. Q.; Kang, L. H.; Sun, Y. H.; Ren, J. S.; Qu, X. G. A smart nanoparticle-laden and remote-controlled self-destructive macrophage for enhanced chemo/chemodynamic synergistic therapy. ACS Nano 2020, 14, 13894–13904.

27

Zhu, Y.; Wang, Y. J.; Williams, G. R.; Fu, L. Y.; Wu, J. J.; Wang, H.; Liang, R. Z.; Weng, X. S.; Wei, M. Multicomponent transition metal dichalcogenide nanosheets for imaging-guided photothermal and chemodynamic therapy. Adv. Sci. (Weinh.) 2020, 7, 2000272.

28

Zhang, G. L.; Xie, W. T.; Xu, Z. W.; Si, Y. C.; Li, Q. D.; Qi, X. Y.; Gan, Y. H.; Wu, Z. Y.; Tian, G. CuO dot-decorated Cu@Gd2O3 core–shell hierarchical structure for Cu(I) self-supplying chemodynamic therapy in combination with MRI-guided photothermal synergistic therapy. Mater. Horiz. 2021, 8, 1017–1028.

29

Feng, L. L.; Liu, B.; Xie, R.; Wang, D. D.; Qian, C.; Zhou, W. Q.; Liu, J. W.; Jana, D.; Yang, P. P.; Zhao, Y. L. An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 2021, 31, 2006216.

30

Yang, Z. M.; Zhang, Z. J.; Lei, Z. Q.; Wang, D.; Ma, H. C.; Tang, B. Z. Precise molecular engineering of small organic phototheranostic agents toward multimodal imaging-guided synergistic therapy. ACS Nano 2021, 15, 7328–7339.

31

Guo, X. L.; Ding, Z. Y.; Deng, S. M.; Wen, C. C.; Shen, X. C.; Jiang, B. P.; Liang, H. A novel strategy of transition-metal doping to engineer absorption of carbon dots for near-infrared photothermal/photodynamic therapies. Carbon 2018, 134, 519–530.

32

Li, L. L.; Fu, S. Y.; Chen, C. F.; Wang, X. D.; Fu, C. H.; Wang, S.; Guo, W. B.; Yu, X.; Zhang, X. D.; Liu, Z. R. et al. Microenvironment-driven bioelimination of magnetoplasmonic nanoassemblies and their multimodal imaging-guided tumor photothermal therapy. ACS Nano 2016, 10, 7094–7105.

33

Wu, H. A.; Liu, L.; Song, L. N.; Ma, M.; Gu, N.; Zhang, Y. Enhanced tumor synergistic therapy by injectable magnetic hydrogel mediated generation of hyperthermia and highly toxic reactive oxygen species. ACS Nano 2019, 13, 14013–14023.

34

Lu, S. Y.; Li, X.; Zhang, J. L.; Peng, C.; Shen, M. W.; Shi, X. Y. Dendrimer-stabilized gold nanoflowers embedded with ultrasmall iron oxide nanoparticles for multimode imaging-guided combination therapy of tumors. Adv. Sci. (Weinh.) 2018, 5, 1801612.

35

Eyley, S.; Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 2014, 6, 7764–7779.

36

Khine, Y. Y.; Stenzel, M. H. Surface modified cellulose nanomaterials: A source of non-spherical nanoparticles for drug delivery. Mater. Horiz. 2020, 7, 1727–1758.

37

Jasmani, L.; Eyley, S.; Schütz, C.; Van Gorp, H.; De Feyter, S.; Thielemans, W. One-pot functionalization of cellulose nanocrystals with various cationic groups. Cellulose 2016, 23, 3569–3576.

38

Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem., Int. Ed. 2017, 56, 6187–6191.

39

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

40

Chen, T. X.; Zhao, Q. L.; Meng, X.; Li, Y.; Peng, H.; Whittaker, A. K.; Zhu, S. M. Ultrasensitive magnetic tuning of optical properties of films of cholesteric cellulose nanocrystals. ACS Nano 2020, 14, 9440–9448.

41

Chen, T. X.; Yao, T. T.; Peng, H.; Whittaker, A. K.; Li, Y.; Zhu, S. M.; Wang, Z. Y. An injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy with ultrahigh efficiency based on carbon dots and modified cellulose nanocrystals. Adv. Funct. Mater. 2021, 31, 2106079.

42

Ren, W. Z.; Yan, Y.; Zeng, L. Y.; Shi, Z. Z.; Gong, A.; Schaaf, P.; Wang, D.; Zhao, J. S.; Zou, B. B.; Yu, H. S. et al. A near infrared light triggered hydrogenated black TiO2 for cancer photothermal therapy. Adv. Healthcare Mater. 2015, 4, 1526–1536.

File
12274_2022_4455_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 March 2022
Revised: 16 April 2022
Accepted: 20 April 2022
Published: 14 June 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by Ministry of Education Joint Foundation (No. 6141A02022264), the National Natural Science Foundation of China (Nos. 51672173, U1733130, and 81770934), Shanghai Science and Technology Committee (Nos. 21ZR1435700, 18520744700, and 18JC1410500), Translational Medicine National Key Science and Technology Infrastructure (Shanghai) Open Project (No. TMSK2020128), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (No. 20181810), Clinical research MDT project of the Ninth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine (No. 201905). We also thank Shanghai Synchrotron Radiation Facility (SSRF). The Australian National Fabrication Facility, Queensland Node, is also acknowledged for access to some items of equipment.

Return