AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Carrier-free programmed spherical nucleic acid for effective ischemic stroke therapy via self-delivery antisense oligonucleotide

Wenyan Yu1,2,3Cuiping Xuan1Bingbing Liu1Lei Zhou1Na Yin1Enpeng Gong1Zhenzhong Zhang1,2,3Yinchao Li1,2,3( )Kaixiang Zhang1,2,3( )Jinjin Shi1,2,3( )
School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, China
Show Author Information

Graphical Abstract

Schematic diagram of spherical nucleic acid nanostructure (TD) for effective gene therapy of ischemic stroke via blood-brain barrier (BBB) targeting and apoptosis silencing.

Abstract

Antisense oligonucleotide (ASO) for anti-apoptosis is emerging as a highly promising therapeutic agents for ischemic stroke with complex pathological environment. However, its therapeutic efficacy is seriously limited by a number of challenges including inefficient internalization, low blood-brain barrier (BBB) penetration, poor stability, and potential toxicity of the carrier. Herein, a carrier-free programmed spherical nucleic acid nanostructure is developed for effective ischemic stroke therapy via integrating multifunctional modules into one DNA structure. By co-encoding caspase-3-ASO and transferrin receptor (TfR) aptamer into circle template, the spherical nucleic acid nanostructure (TD) was obtained via self-assembly. The experimental results demonstrated that the developed TD displayed efficient BBB penetration capability (6.4 times) and satisfactory caspase-3 silence effect (2.3 times) due to the dense DNA packaging in TD. Taken together, our study demonstrated that the carrier-free programmed spherical nucleic acid nanostructure could significantly improve the therapeutic efficacy of ischemic stroke and was a promising therapeutic tool for various brain damage-related diseases.

Electronic Supplementary Material

Download File(s)
12274_2022_4402_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Li, S. Y.; Jiang, D. W.; Ehlerding, E. B.; Rosenkrans, Z. T.; Engle, J. W.; Wang, Y.; Liu, H. S.; Ni, D. L.; Cai, W. B. Intrathecal administration of nanoclusters for protecting neurons against oxidative stress in cerebral ischemia/reperfusion injury. ACS Nano 2019, 13, 13382–13389.

[2]

Li, M. X.; Li, J.; Chen, J. P.; Liu, Y.; Cheng, X.; Yang, F.; Gu, N. Platelet membrane biomimetic magnetic nanocarriers for targeted delivery and in situ generation of nitric oxide in early ischemic stroke. ACS Nano 2020, 14, 2024–2035.

[3]

Li, C.; Sun, T.; Jiang, C. Recent advances in nanomedicines for the treatment of ischemic stroke. Acta Pharm. Sin. B 2021, 11, 1767–1788.

[4]

Wang, C. X.; Lin, G.; Luan, Y.; Ding, J.; Li, P. C.; Zhao, Z.; Qian, C.; Liu, G.; Ju, S. H.; Teng, G. J. Hif-prolyl hydroxylase 2 silencing using siRNA delivered by MRI-visible nanoparticles improves therapy efficacy of transplanted EPCs for ischemic stroke. Biomaterials 2019, 197, 229–243.

[5]

Lin, B. L.; Lu, L. J.; Wang, Y.; Zhang, Q. Y.; Wang, Z.; Cheng, G. X.; Duan, X. H.; Zhang, F.; Xie, M. W.; Le, H. B. et al. Nanomedicine directs neuronal differentiation of neural stem cells via silencing long noncoding RNA for stroke therapy. Nano Lett. 2021, 21, 806–815.

[6]

Liu, Y. L.; Ai, K. L.; Ji, X. Y.; Askhatova, D.; Du, R.; Lu, L. H.; Shi, J. J. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J. Am. Chem. Soc. 2017, 139, 856–862.

[7]

Guo, X.; Deng, G.; Liu, J.; Zou, P.; Du, F. Y.; Liu, F. Y.; Chen, A. T.; Hu, R.; Li, M.; Zhang, S. Q. et al. Thrombin-responsive, brain-targeting nanoparticles for improved stroke therapy. ACS Nano 2018, 12, 8723–8732.

[8]

Bao, Q. Q.; Hu, P.; Xu, Y. Y.; Cheng, T. S.; Wei, C. Y.; Pan, L. M.; Shi, J. L. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 2018, 12, 6794–6805.

[9]

Dong, X. Y.; Gao, J.; Zhang, C. Y.; Hayworth, C.; Frank, M.; Wang, Z. J. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke. ACS Nano 2019, 13, 1272–1283.

[10]

Shi, J. J.; Yu, W. Y.; Xu, L. H.; Yin, N.; Liu, W.; Zhang, K. X.; Liu, J. J.; Zhang, Z. Z. Bioinspired nanosponge for salvaging ischemic stroke via free radical scavenging and self-adapted oxygen regulating. Nano Lett. 2020, 20, 780–789.

[11]

Tang, C. M.; Wang, C.; Zhang, Y.; Xue, L. J.; Li, Y. Y.; Ju, C. Y.; Zhang, C. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett. 2019, 19, 4470–4477.

[12]

Lv, W.; Xu, J. P.; Wang, X. Q.; Li, X. R.; Xu, Q. W.; Xin, H. L. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano 2018, 12, 5417–5426.

[13]

He, L. Z.; Huang, G. N.; Liu, H. X.; Sang, C. C.; Liu, X. X.; Chen, T. F. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 2020, 6, eaay9751.

[14]

De Ávila, B. E. F.; Ramírez-Herrera, D. E.; Campuzano, S.; Angsantikul, P.; Zhang, L. F.; Wang, J. Nanomotor-enabled pH-responsive intracellular delivery of caspase-3: Toward rapid cell apoptosis. ACS Nano 2017, 11, 5367–5374.

[15]

Emamaullee, J. A.; Shapiro, A. M. J. Interventional strategies to prevent β-cell apoptosis in islet transplantation. Diabetes 2006, 55, 1907–1914.

[16]

Cheng, G. F.; Zhu, L.; Mahato, R. I. Caspase-3 gene silencing for inhibiting apoptosis in insulinoma cells and human islets. Mol. Pharmaceutics 2008, 5, 1093–1102.

[17]

Chen, Y.; Chen, C.; Zhang, X. J.; He, C. C.; Zhao, P. X.; Li, M. S.; Fan, T.; Yan, R. C.; Lu, Y.; Lee, R. J. et al. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm. Sin. B 2020, 10, 1106–1121.

[18]

Brandhorst, D.; Kumarasamy, V.; Maatoui, A.; Alt, A.; Bretzel, R. G.; Brandhorst, H. Porcine islet graft function is affected by pretreatment with a caspase-3 inhibitor. Cell Transplant. 2006, 15, 311–317.

[19]

Nakano, M.; Matsumoto, I.; Sawada, T.; Ansite, J.; Oberbroeckling, J.; Zhang, H. J.; Kirchhof, N. V.; Shearer, J.; Sutherland, D. E. R.; Hering, B. J. Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas 2004, 29, 104–109.

[20]

Zou, Y.; Sun, X. H.; Wang, Y. B.; Yan, C. N.; Liu, Y. J.; Li, J.; Zhang, D. Y.; Zheng, M.; Chung, R. S.; Shi, B. Y. Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 2020, 32, 2000416.

[21]

Wang, Y. L.; Pang, J. Y.; Wang, Q. Y.; Yan, L. C.; Wang, L. T.; Xing, Z.; Wang, C. M.; Zhang, J. F.; Dong, L. Delivering antisense oligonucleotides across the blood-brain barrier by tumor cell-derived small apoptotic bodies. Adv. Sci. 2021, 8, 2004929.

[22]

Kingwell, K. New targets for drug delivery across the BBB. Nat. Rev. Drug Discov. 2016, 15, 84–85.

[23]

Ma, F. H.; Yang, L.; Sun, Z. R.; Chen, J. J.; Rui, X. H.; Glass, Z.; Xu, Q. B. Neurotransmitter-derived lipidoids (NT-lipidoids) for enhanced brain delivery through intravenous injection. Sci. Adv. 2020, 6, eabb4429.

[24]

Guan, J. B.; Guo, H.; Tang, T.; Wang, Y. H.; Wei, Y. S.; Seth, P.; Li, Y. M.; Dehm, S. M.; Ruoslahti, E.; Pang, H. B. iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv. Funct. Mater. 2021, 31, 2100478.

[25]

Sicard, G.; Paris, C.; Giacometti, S.; Rodallec, A.; Ciccolini, J.; Rocchi, P.; Fanciullino, R. Enhanced antisense oligonucleotide delivery using cationic liposomes grafted with trastuzumab: A proof-of-concept study in prostate cancer. Pharm. 2020, 12, 1166.

[26]
Song, Y. L. ; Jing, H. Q. ; Vong, L. B. ; Wang, J. P. ; Li, N. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. Chin. Chem. Lett. 2021, in press,DOI: 10.1016/j.cclet.2021.10.055.
[27]

Min, H. S.; Kim, H. J.; Naito, M.; Ogura, S.; Toh, K.; Hayashi, K.; Kim, B. S.; Fukushima, S.; Anraku, Y.; Miyata, K. et al. Systemic brain delivery of antisense oligonucleotides across the blood-brain barrier with a glucose-coated polymeric nanocarrier. Angew. Chem. , Int. Ed. 2020, 59, 8173–8180.

[28]

Lee, J. B.; Hong, J.; Bonner, D. K.; Poon, Z.; Hammond, P. T. Self-assembled RNA interference microsponges for efficient sirna delivery. Nat. Mater. 2012, 11, 316–322.

[29]

Zhang, K. X.; Liu, J. J.; Song, Q. L.; Yang, X.; Wang, D. Y.; Liu, W.; Shi, J. J.; Zhang, Z. Z. DNA nanosponge for adsorption and clearance of intracellular miR-21 and enhanced antitumor chemotherapy. ACS Appl. Mater. Interfaces 2019, 11, 46604–46613.

[30]

Li, K.; Lu, M.; Xia, X. H.; Huang, Y. Y. Recent advances in photothermal and RNA interfering synergistic therapy. Chin. Chem. Lett. 2021, 32, 1010–1016.

[31]

Lai, W. F.; Wong, W. T. Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol. 2018, 36, 713–728.

[32]

Chen, W.; Hu, Y.; Ju, D. W. Gene therapy for neurodegenerative disorders: Advances, insights and prospects. Acta Pharm. Sin. B 2020, 10, 1347–1359.

[33]

Behr, M.; Zhou, J.; Xu, B.; Zhang, H. W. In vivo delivery of CRISPR-cas9 therapeutics: Progress and challenges. Acta Pharm. Sin. B 2021, 11, 2150–2171.

[34]

Chen, L.; Zhang, J.; Lin, Z.; Zhang, Z. Y.; Mao, M.; Wu, J. C.; Li, Q.; Zhang, Y. Q.; Fan, C. H. Pharmaceutical applications of framework nucleic acids. Acta Pharm. Sin. B 2022, 12, 76–91.

[35]

Wang, Y. Q.; Li, C. J.; Du, L. B.; Liu, Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chin. Chem. Lett. 2020, 31, 275–280.

[36]

Guo, Q.; Li, C.; Zhou, W. X.; Chen, X. L.; Zhang, Y.; Lu, Y. F.; Zhang, Y. J.; Chen, Q. J.; Liang, D. H.; Sun, T. et al. GLUT1-mediated effective anti-miRNA21 pompon for cancer therapy. Acta Pharm. Sin. B 2019, 9, 832–842.

[37]
Cong, M. ; Xu, G. L. ; Yang, S. Y. ; Zhang, J. ; Zhang, W. Z. ; Dhumal, D. ; Laurini, E. ; Zhang, K. Y. ; Xia, Y. ; Pricl, S. et al. A self-assembling prodrug nanosystem to enhance metabolic stability and anticancer activity of gemcitabine. Chin. Chem. Lett. 2021, in press,https://doi.org/10.1016/j.cclet.2021.11.083.
[38]

Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.

[39]

Lee, J. H.; Shin, Y.; Lee, W.; Whang, K.; Kim, D.; Lee, L. P.; Choi, J. W.; Kang, T. General and programmable synthesis of hybrid liposome/metal nanoparticles. Sci. Adv. 2016, 2, e1601838.

[40]

Lopez-Pajares, V.; Yan, K.; Zarnegar, B. J.; Jameson, K. L.; Khavari, P. A. Genetic pathways in disorders of epidermal differentiation. Trends Genet. 2013, 29, 31–40.

[41]

Shohat, S.; Ben-David, E.; Shifman, S. Varying intolerance of gene pathways to mutational classes explain genetic convergence across neuropsychiatric disorders. Cell Rep. 2017, 18, 2217–2227.

Nano Research
Pages 735-745
Cite this article:
Yu W, Xuan C, Liu B, et al. Carrier-free programmed spherical nucleic acid for effective ischemic stroke therapy via self-delivery antisense oligonucleotide. Nano Research, 2023, 16(1): 735-745. https://doi.org/10.1007/s12274-022-4402-7
Topics:

1001

Views

14

Crossref

14

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 16 January 2022
Revised: 04 February 2022
Accepted: 06 April 2022
Published: 24 May 2022
© Tsinghua University Press 2022
Return