Journal Home > Volume 15 , Issue 6

Friction force (f) usually increases with the normal load (N) macroscopically, according to the classic law of Da Vinci–Amontons (f = µN), with a positive and finite friction coefficient (µ). Herein near-zero and negative differential friction (ZNDF) coefficients are discovered in two-dimensional (2D) van der Waals (vdW) magnetic CrI3 commensurate contacts. It is identified that the ferromagnetic–antiferromagnetic phase transition of the interlayer couplings of the bilayer CrI3 can significantly reduce the interfacial sliding energy barriers and thus contribute to ZNDF. Moreover, phase transition between the in-plane (px and py) and out-of-plane (pz) wave-functions dominates the sliding barrier evolutions, which is attributed to the delicate interplays among the interlayer vdW, electrostatic interactions, and the intralayer deformation of the CrI3 layers under external load. The present findings may motivate a new concept of slide-spintronics and are expected to play an instrumental role in design of novel magnetic solid lubricants applied in various spintronic nano-devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition

Show Author's information Kun Liu1,2Jiangtao Cheng2Xingju Zhao2Yandi Zhu2Xiaoyan Ren2Jinlei Shi2Zhengxiao Guo3,4Chongxin Shan2( )Hongjie Liu1( )Shunfang Li2( )
Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang 621900, China
Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Department of Chemistry and Department of Mechanical Engineering, the University of Hong Kong, Hong Kong 999077, China
HKU Zhejiang Institute of Research and Innovation, Qinshan SciTech City, Hangzhou 311305, China

Abstract

Friction force (f) usually increases with the normal load (N) macroscopically, according to the classic law of Da Vinci–Amontons (f = µN), with a positive and finite friction coefficient (µ). Herein near-zero and negative differential friction (ZNDF) coefficients are discovered in two-dimensional (2D) van der Waals (vdW) magnetic CrI3 commensurate contacts. It is identified that the ferromagnetic–antiferromagnetic phase transition of the interlayer couplings of the bilayer CrI3 can significantly reduce the interfacial sliding energy barriers and thus contribute to ZNDF. Moreover, phase transition between the in-plane (px and py) and out-of-plane (pz) wave-functions dominates the sliding barrier evolutions, which is attributed to the delicate interplays among the interlayer vdW, electrostatic interactions, and the intralayer deformation of the CrI3 layers under external load. The present findings may motivate a new concept of slide-spintronics and are expected to play an instrumental role in design of novel magnetic solid lubricants applied in various spintronic nano-devices.

Keywords: first-principles calculations, two-dimensional (2D) magnetic materials, CrI3, negative differential friction coefficient

References(64)

1
Persson, B. N. J. Sliding Friction: Physical Principles and Applications, 2nd ed.; Springer: Berlin, 2000.https://doi.org/10.1007/978-3-662-04283-0
DOI
2

Vanossi, A.; Manini, N.; Urbakh, M.; Zapperi, S.; Tosatti, E. Colloquium: Modeling friction: From nanoscale to mesoscale. Rev. Mod. Phys. 2013, 85, 529–552.

3

Persson, B. N. J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861.

4

Urbakh, M.; Klafter, J.; Gourdon, D.; Israelachvili, J. The nonlinear nature of friction. Nature 2004, 430, 525–528.

5

Bormuth, V.; Varga, V.; Howard, J.; Schäffer, E. Protein friction limits diffusive and directed movements of kinesin motors on microtubules. Science 2009, 325, 870–873.

6

Holmberg, K.; Andersson, P.; Erdemir, A. Global energy consumption due to friction in passenger cars. Tribology International 2012, 47, 221–234.

7

Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284.

8

Tshiprut, Z.; Zelner, S.; Urbakh, M. Temperature-induced enhancement of nanoscale friction. Phys. Rev. Lett. 2009, 102, 136102.

9

Guerra, R.; Tartaglino, U.; Vanossi, A.; Tosatti, E. Ballistic nanofriction. Nat. Mater. 2010, 9, 634–637.

10

Persson, B. N. J.; Albohr, O.; Tartaglino, U.; Volokitin, A. I.; Tosatti, E. On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 2005, 17, R1–R62.

11

Xie, H. T.; Wang, S. L.; Huang, H. Effects of surface roughness on the kinetic friction of SiC nanowires on SiN substrates. Tribol. Lett. 2018, 66, 15.

12

Li, S. Z.; Li, Q. Y.; Carpick, R. W.; Gumbsch, P.; Liu, X. Z.; Ding, X. D.; Sun, J.; Li, J. The evolving quality of frictional contact with graphene. Nature 2016, 539, 541–545.

13

Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X. Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.

14

Filleter, T.; McChesney, J. L.; Bostwick, A.; Rotenberg, E.; Emtsev, K. V.; Seyller, T.; Horn, K.; Bennewitz, R. Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 2009, 102, 086102.

15

Gnecco, E.; Bennewitz, R.; Gyalog, T.; Loppacher, C.; Bammerlin, M.; Meyer, E.; Güntherodt, H. J. Velocity dependence of atomic friction. Phys. Rev. Lett. 2000, 84, 1172–1175.

16

Thorén, P. A.; de Wijn, A. S.; Borgani, R.; Forchheimer, D.; Haviland, D. B. Imaging high-speed friction at the nanometer scale. Nat. Commun. 2016, 7, 13836.

17

Dayo, A.; Alnasrallah, W.; Krim, J. Superconductivity-dependent sliding friction. Phys. Rev. Lett. 1998, 80, 1690–1693.

18

Park, J. Y.; Ogletree, D. F.; Thiel, P. A.; Salmeron, M. Electronic control of friction in silicon pn junctions. Science 2006, 313, 186.

19

Kisiel, M.; Gnecco, E.; Gysin, U.; Marot, L.; Rast, S.; Meyer, E. Suppression of electronic friction on Nb films in the superconducting state. Nat. Mater. 2011, 10, 119–122.

20

Kaiser, U.; Schwarz, A.; Wiesendanger, R. Magnetic exchange force microscopy with atomic resolution. Nature 2007, 446, 522–525.

21

Androulidakis, C.; Koukaras, E. N.; Paterakis, G.; Trakakis, G.; Galiotis, C. Tunable macroscale structural superlubricity in two-layer graphene via strain engineering. Nat. Commun. 2020, 11, 1595.

22

Luo, J. B.; Liu, M.; Ma, L. R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 2021, 86, 106092.

23

Andersson, D.; de Wijn, A. S. Understanding the friction of atomically thin layered materials. Nat. Commun. 2020, 11, 420.

24

Zhang, Y. N.; Hanke, F.; Bortolani, V.; Persson, M.; Wu, R. Q. Why sliding friction of Ne and Kr monolayers is so different on the Pb(111) surface. Phys. Rev. Lett. 2011, 106, 236103.

25

Gao, W.; Tkatchenko, A. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: The effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 2015, 114, 096101.

26

Vazirisereshk, M. R.; Ye, H.; Ye, Z. J.; Otero-de-la-Roza, A.; Zhao, M. Q.; Gao, Z. L.; Johnson, A. T. C.; Johnson, E. R.; Carpick, R. W.; Martini, A. Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure. Nano Lett. 2019, 19, 5496–5505.

27

Müser, M. H. Structural lubricity: Role of dimension and symmetry. Eur. Lett. 2004, 66, 97–103.

28

Shinjo, K.; Hirano, M. Dynamics of friction: Superlubric state. Surf. Sci. 1993, 283, 473–478.

29

Peyrard, M.; Aubry, S. Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel−Kontorova model. J. Phys. C Solid State Phys. 1983, 16, 1593–1608.

30

Hirano, M.; Shinjo, K.; Kaneko, R.; Murata, Y. Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 1991, 67, 2642–2645.

31

Berman, D.; Deshmukh, S. A.; Sankaranarayanan, S. R. S.; Erdemir, A.; Sumant, A. V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 2015, 348, 1118–1122.

32

Song, Y. M.; Mandelli, D.; Hod, O.; Urbakh, M.; Ma, M.; Zheng, Q. S. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 2018, 17, 894–899.

33

Deng, Z.; Smolyanitsky, A.; Li, Q. Y.; Feng, X. Q.; Cannara, R. J. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale. Nat. Mater. 2012, 11, 1032–1037.

34

Liu, B. T.; Wang, J.; Zhao, S. J.; Qu, C. Y.; Liu, Y.; Ma, L. R.; Zhang, Z. H.; Liu, K. H.; Zheng, Q. S.; Ma, M. Negative friction coefficient in microscale graphite/mica layered heterojunctions. Sci. Adv. 2020, 6, eaaz6787.

35

Mandelli, D.; Ouyang, W. G.; Hod, O.; Urbakh, M. Negative friction coefficients in superlubric graphite-hexagonal boron nitride heterojunctions. Phys. Rev. Lett. 2019, 122, 076102.

36

Sun, J. H.; Lu, Y. Y.; Feng, Y. Q.; Lu, Z. B.; Zhang, G. A.; Yuan, Y. P.; Qian, L. M.; Xue, Q. J. Friction-load relationship in the adhesive regime revealing potential incapability of AFM investigations. Tribol. Lett. 2020, 68, 18.

37

Sun, J. H.; Zhang, Y. N.; Lu, Z. B.; Li, Q. Y.; Xue, Q. J.; Du, S. Y.; Pu, J. B.; Wang, L. P. Superlubricity enabled by pressure-induced friction collapse. J. Phys. Chem. Lett. 2018, 9, 2554–2559.

38

Yang, C. B.; Xiao, S. Y.; Yang, J. C.; Lu, X. M.; Chu, Y. H.; Zhou, M.; Huang, F. Z.; Zhu, J. S. Dry lubrication of friction on ferroelectric BiFeO3 film. Appl. Surf. Sci. 2018, 457, 797–803.

39

Sun, J. G.; Zhang, L. L.; Pang, R.; Zhao, X. J.; Cheng, J. T.; Zhang, Y. M.; Xue, X. L.; Ren, X. Y.; Zhu, W. G.; Li, S. F. et al. Negative differential friction predicted in two-dimensional ferroelectric In2Se3 commensurate contacts. Adv. Sci. 2022, 9, 2103443.

40

Monceau, P.; Richard, J.; Renard, M. Charge-density-wave motion in NbSe3. I. Studies of the differential resistance dVdI. Phys. Rev. B 1982, 25, 931–947.

41

Chen, L.; Hu, Z. P.; Zhao, A. D.; Wang, B.; Luo, Y.; Yang, J. L.; Hou, J. G. Mechanism for negative differential resistance in molecular electronic devices: Local orbital symmetry matching. Phys. Rev. Lett. 2007, 99, 146803.

42

Íñiguez, J.; Zubko, P.; Luk'yanchuk, I.; Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 2019, 4, 243–256.

43

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

44

Sivadas, N.; Okamoto, S.; Xu, X. D.; Fennie, C. J.; Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 2018, 18, 7658–7664.

45

Jiang, P. H.; Wang, C.; Chen, D. C.; Zhong, Z. C.; Yuan, Z.; Lu, Z. Y.; Ji, W. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 2019, 99, 144401.

46

Soriano, D.; Cardoso, C.; Fernández-Rossier, J. Interplay between interlayer exchange and stacking in CrI3 bilayers. Solid State Commun. 2019, 299, 113662.

47

Chen, W. O.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

48

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

49

Song, T.; Fei, Z.; Yankowitz, M.; Lin, Z.; Jiang, Q.; Hwangbo, K.; Zhang, Q.; Sun, B.; Taniguchi, T.; Watanabe, K. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 2019, 18, 1298–1302.

50

Li, T.; Jiang, S.; Sivadas, N.; Wang, Z.; Xu, Y.; Weber, D.; Goldberger, J. E.; Watanabe, K.; Taniguchi, T.; Fennie, C. J. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 2019, 18, 1303–1308.

51

Soriano, D.; Katsnelson, M. I. Magnetic polaron and antiferromagnetic-ferromagnetic transition in doped bilayer CrI3. Phys. Rev. B 2020, 101, 041402.

52

Webster, L.; Yan, J. A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 2018, 98, 144411.

53

Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoğlu, A.; Giannini, E.; Morpurgo, A. F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516.

54

Jiang, S. W.; Xie, H. C.; Shan, J.; Mak, K. F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 2020, 19, 1295–1299.

55

Cantos-Prieto, F.; Falin, A.; Alliati, M.; Qian, D.; Zhang, R.; Tao, T.; Barnett, M. R.; Santos, E. J. G.; Li, L. H.; Navarro-Moratalla, E. Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets. Nano Lett. 2021, 21, 3379–3385.

56

Stern, M. V.; Waschitz, Y.; Cao, W.; Nevo, I.; Watanabe, K.; Taniguchi, T.; Sela, E.; Urbakh, M.; Hod, O.; Ben Shalom, M. Interfacial ferroelectricity by van der Waals sliding. Science 2021, 372, 1462–1466.

57

Yasuda, K.; Wang, X. R.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 2021, 372, 1458–1462.

58

Zheng, Z. R.; Ma, Q.; Bi, Z.; de la Barrera, S.; Liu, M. H.; Mao, N. N.; Zhang, Y.; Kiper, N.; Watanabe, K.; Taniguchi, T. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 2020, 588, 71–76.

59

Constantinescu, G.; Kuc, A.; Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 2013, 111, 036104.

60

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

61

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

62

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

63

McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 2015, 27, 612–620.

64

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

File
12274_2022_4316_MOESM1_ESM.pdf (753.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 November 2021
Revised: 09 February 2022
Accepted: 11 March 2022
Published: 04 April 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12074345, 12174349, 11674289, 11804306, 11634011 and U2030120), and Henan Provincial Key Science and Technology Research Projects (No. 212102210130).

Return