AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Facile fabrication of a single-particle platform with high throughput via substrate surface potential regulated large-spacing nanoparticle assembly

Dong Li1,§Yinghui Sun2,§Yawen Wang1,§Yuanlan Liu1Bo Zhao1Wenkai Liang1Heng Gao1Lin Jiang1( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
College of Energy, Soochow Institute for Energy and Materials Innovations and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China

§ Dong Li, Yinghui Sun, and Yawen Wang contributed equally to this work.

Show Author Information

Graphical Abstract

By adjusting the substrate surface potential, a high-quality monodispersed gold nanoparticles array was achieved and used as a high-throughput single-particle platform to prepare nanosized organic-light-emitting diodes (nano-OLEDs) with individual nanoparticles as the electrode, first demonstrating a bright green electroluminescence withsingle-particle resolution in nanoscale.

Abstract

Nanodevices based on the single nanoparticle represent innovative and promising technology, which could satisfy the increasing requirements of high accuracy, low energy consumption, and small volume. However, the acquisition of single particles involves complex operation, and the corresponding nanodevices display low-throughput. Herein, we present a facile strategy to construct a single-particle platform with high throughput via substrate surface potential modulated a large-area and large-spacing nanoparticle assembly. Such platform not only avoids optic interference but also ensures the independent electrically conductive channel of single particle on substrate. Therefore, the dark-field microscopic imaging and single-particle scattering signals collecting of individual nanoparticles with plasmonic effect are satisfactory achieved based on the platform, and the first success in the fabrication of nano-organic-light-emitting-diodes with single nanoparticle resolution in nanoscale. All the results indicate that the strategy may find promising applications in the in situ single-particle research such as single-particle detection, single-particle catalysis, and optoelectronics.

Electronic Supplementary Material

Download File(s)
12274_2022_4296_MOESM1_ESM.pdf (1.7 MB)

References

1

Polman, A.; Kociak, M.; de Abajo, F. J. G. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 2019, 18, 1158–1171.

2

Lee, C.; Xu, E. Z.; Liu, Y. W.; Teitelboim, A.; Yao, K. Y.; Fernandez-Bravo, A.; Kotulska, A. M.; Nam, S. H.; Suh, Y. D.; Bednarkiewicz, A. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 2021, 589, 230–235.

3

Wu, F.; Guo, J. Q.; Huang, Y. M.; Liang, K.; Jin, L.; Li, J. Q.; Deng, X. Y.; Jiao, R. Z.; Liu, Y. M.; Zhang, J. S. et al. Plexcitonic optical chirality: Strong exciton–plasmon coupling in chiral J-aggregate-metal nanoparticle complexes. ACS Nano 2021, 15, 2292–2300.

4

Chen, Z. G.; Segev, M. Highlighting photonics: Looking into the next decade. eLight 2021, 1, 2.

5

Liu, S. S.; Zhou, K.; Yuan, T. L.; Lei, W. R.; Chen, H. Y.; Wang, X. Y.; Wang, W. Imaging the thermal hysteresis of single spin-crossover nanoparticles. J. Am. Chem. Soc. 2020, 142, 15852–15859.

6

Bitton, O.; Gutman, D. B.; Berkovits, R.; Frydman, A. Multiple periodicity in a nanoparticle-based single-electron transistor. Nat. Commun. 2017, 8, 402.

7

Luo, Z. R.; Xie, Y. F.; Li, Z. W.; Wang, Y. J.; Li, L. H.; Luo, Z. Y.; Zhu, C. G.; Yang, X.; Huang, M.; Huang, J. H. et al. Plasmonically engineered light−matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res. 2022, 15, 3539–3547.

8

Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 2014, 14, 3510–3514.

9

Li, X. X.; Hong, J. N.; Zhang, L. N. Binary gas analyzer based on a single gold nanoparticle photothermal response. ACS Omega 2020, 5, 27164–27170.

10

Stoev, I. D.; Seelbinder, B.; Erben, E.; Maghelli, N.; Kreysing, M. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap. eLight 2021, 1, 7.

11

Miller, B. S.; Bezinge, L.; Gliddon, H. D.; Huang, D.; Dold, G.; Gray, E. R.; Heaney, J.; Dobson, P. J.; Nastouli, E.; Morton, J. J. L. et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature 2020, 587, 588–593.

12

Midtvedt, B.; Olsén, E.; Eklund, F.; Höök, F.; Adiels, C. B.; Volpe, G.; Midtvedt, D. Fast and accurate nanoparticle characterization using deep-learning-enhanced off-axis holography. ACS Nano 2021, 15, 2240–2250.

13

Li, W.; Coppens, Z. J.; Besteiro, L. V.; Wang, W. Y.; Govorov, A. O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379.

14

Patrice, F. T.; Qiu, K. P.; Ying, Y. L.; Long, Y. T. Single nanoparticle electrochemistry. Annu. Rev. Anal. Chem. 2019, 12, 347–370.

15

Willets, K. A. Supercharging superlocalization microscopy: How electrochemical charging of plasmonic nanostructures uncovers hidden heterogeneity. ACS Nano 2019, 13, 6145–6150.

16

Parzefall, M.; Szabó, A.; Taniguchi, T.; Watanabe, K.; Luisier, M.; Novotny, L. Light from van der Waals quantum tunneling devices. Nat. Commun. 2019, 10, 292.

17

Zhang, P. F.; Ma, G. Z.; Dong, W.; Wan, Z. J.; Wang, S. P.; Tao, N. J. Plasmonic scattering imaging of single proteins and binding kinetics. Nat. Methods 2020, 17, 1010–1017.

18

Tan, S. J.; Zhang, L.; Zhu, D.; Goh, X. M.; Wang, Y. M.; Kumar, K.; Qiu, C. W.; Yang, J. K. W. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 2014, 14, 4023–4029.

19

Huang, L. L.; Chen, X. Z.; Mühlenbernd, H.; Zhang, H.; Chen, S. M.; Bai, B. F.; Tan, Q. F.; Jin, G. F.; Cheah, K. W.; Qiu, C. W. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 2808.

20

Wang, X. D.; Zhang, X. R.; Huang, D. X.; Zhao, T. Y.; Zhao, L. L.; Fang, X. K.; Yang, C. H.; Chen, G. Y. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level. Anal. Chem. 2021, 93, 11686–11691.

21

Jiang, Q. B.; Roy, P.; Claude, J. B.; Wenger, J. Single photon source from a nanoantenna-trapped single quantum dot. Nano Lett. 2021, 21, 7030–7036.

22

Levin, S.; Fritzsche, J.; Nilsson, S.; Runemark, A.; Dhokale, B.; Ström, H.; Sundén, H.; Langhammer, C.; Westerlund, F. A nanofluidic device for parallel single nanoparticle catalysis in solution. Nat. Commun. 2019, 10, 4426.

23

Zhao, X.; Yang, L.; Guo, J. H.; Xiao, T.; Zhou, Y.; Zhang, Y. C.; Tu, B.; Li, T. H.; Grzybowski, B. A.; Yan, Y. Transistors and logic circuits based on metal nanoparticles and ionic gradients. Nat. Electron. 2021, 4, 109–115.

24

Zhao, X.; Guo, J. H.; Xiao, T.; Zhang, Y. C.; Yan, Y.; Grzybowski, B. A. Charged metal nanoparticles for chemoelectronic circuits. Adv. Mater. 2019, 31, 1804864.

25

Anderson, T. J.; Zhang, B. Single-nanoparticle electrochemistry through immobilization and collision. Acc. Chem. Res. 2016, 49, 2625–2631.

26

Lemineur, J. F.; Noël, J. M.; Ausserré, D.; Combellas, C.; Kanoufi, F. Combining electrodeposition and optical microscopy for probing size-dependent single-nanoparticle electrochemistry. Angew. Chem., Int. Ed. 2018, 57, 11998–12002.

27

Choi, M.; Siepser, N. P.; Jeong, S.; Wang, Y.; Jagdale, G.; Ye, X. C.; Baker, L. A. Probing single-particle electrocatalytic activity at facet-controlled gold nanocrystals. Nano Lett. 2020, 20, 1233–1239.

28

Zhao, Z.; Chen, X. H.; Zuo, J. W.; Basiri, A.; Choi, S.; Yao, Y.; Liu, Y.; Wang, C. Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami. Nano Res. 2022, 15, 1327–1337.

29

Dahlberg, P. D.; Perez, D.; Su, Z. M.; Chiu, W.; Moerner, W. E. Cryogenic correlative single-particle photoluminescence spectroscopy and electron tomography for investigation of nanomaterials. Angew. Chem., Int. Ed. 2020, 59, 15642–15648.

30

Xu, S. H.; Guo, L. H.; Chen, L. F.; Luo, F.; Qiu, B.; Lin, Z. Y. Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix. Microchim Acta 2020, 187, 413.

31

Al-Zubeidi, A.; Stein, F.; Flatebo, C.; Rehbock, C.; Hosseini Jebeli, S. A.; Landes, C. F.; Barcikowski, S.; Link, S. Single-particle hyperspectral imaging reveals kinetics of silver ion leaching from alloy nanoparticles. ACS Nano 2021, 15, 8363–8375.

32

Hoener, B. S.; Kirchner, S. R.; Heiderscheit, T. S.; Collins, S. S. E.; Chang, W. S.; Link, S.; Landes, C. F. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem 2018, 4, 1560–1585.

33

Liu, S.; Arce, A. S.; Nilsson, S.; Albinsson, D.; Hellberg, L.; Alekseeva, S.; Langhammer, C. In situ plasmonic nanospectroscopy of the CO oxidation reaction over single Pt nanoparticles. ACS Nano 2019, 13, 6090–6100.

34

Yan, X. H.; Wei, H. Strong plasmon–exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe2. Nanoscale 2020, 12, 9708–9716.

35

Jiang, L.; Chen, X. D.; Lu, N.; Chi, L. F. Spatially confined assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 3009–3017.

36

Lin, Q. Y.; Mason, J. A.; Li, Z. Y.; Zhou, W. J.; O'Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 2018, 359, 669–672.

37

Zhang, H. Y.; Kinnear, C.; Mulvaney, P. Fabrication of single-nanocrystal arrays. Adv. Mater. 2020, 32, 1904551.

38

Wang, Y. W.; Li, D.; Sun, Y. H.; Zhong, L. B.; Liang, W. K.; Qin, W.; Guo, W.; Liang, Z. Q.; Jiang, L. Multiplexed assembly of plasmonic nanostructures through charge inversion on substrate for surface encoding. ACS Appl. Mater. Interfaces 2020, 12, 6176–6182.

39

Lu, X. F.; Dandapat, A.; Huang, Y. J.; Zhang, L.; Rong, Y.; Dai, L. W.; Sasson, Y.; Zhang, J. W.; Chen, T. Tris base assisted synthesis of monodispersed citrate-capped gold nanospheres with tunable size. RSC Adv. 2016, 6, 60916–60921.

40

Li, Q.; Zhuo, X. L.; Li, S.; Ruan, Q. F.; Xu, Q. H.; Wang, J. F. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater. 2015, 3, 801–812.

41

Ye, S. S.; Wang, H. Y.; Su, H. Y.; Chang, L. X.; Wang, S. L.; Zhang, X. M.; Zhang, J. L.; Yang, B. Facile fabrication of homogeneous and gradient plasmonic arrays with tunable optical properties via thermally regulated surface charge density. J. Mater. Chem. C 2017, 5, 3962–3972.

42

Boehmler, D. J.; O’Dell, Z. J.; Chung, C.; Riley, K. R. Bovine serum albumin enhances silver nanoparticle dissolution kinetics in a size- and concentration-dependent manner. Langmuir 2020, 36, 1053–1061.

43

Liu, Y. Z.; Lin, X. M.; Sun, Y. G.; Rajh, T. In situ visualization of self-assembly of charged gold nanoparticles. J. Am. Chem. Soc. 2013, 135, 3764–3767.

44

Jiang, L.; Zou, C. J.; Zhang, Z. H.; Sun, Y. H.; Jiang, Y. Y.; Leow, W.; Liedberg, B.; Li, S. Z.; Chen, X. D. Synergistic modulation of surface interaction to assemble metal nanoparticles into two-dimensional arrays with tunable plasmonic properties. Small 2014, 10, 609–616.

45

Schmudde, M.; Grunewald, C.; Risse, T.; Graf, C. Controlling the interparticular distances of extended non-close-packed colloidal monolayers. Langmuir 2020, 36, 4827–4834.

46

Schnabel, U.; Fischer, C. H.; Kenndler, E. Characterization of colloidal gold nanoparticles according to size by capillary zone electrophoresis. J. Microcolumn Sep. 1997, 9, 529–534.

47

Romo, L. A. Stability of non-aqueous dispersions. J. Phys. Chem. 1963, 67, 386–389.

48

Filippov, A. N.; Philippova, T. S. Electrostatic and molecular interaction between a charged spherical particle and a charged membrane pore: The case of given surface charge densities. Membr. Membr. Technol. 2021, 3, 15–23.

49

Smith III, F. G.; Deen, W. M. Electrostatic double-layer interactions for spherical colloids in cylindrical pores. J. Colloid Interface Sci. 1980, 78, 444–465.

50

Smith III, F. G.; Deen, W. M. Electrostatic effects on the partitioning of spherical colloids between dilute bulk solution and cylindrical pores. J. Colloid Interface Sci. 1983, 91, 571–590.

51

Özdemir, B.; Huang, W.; Plettl, A.; Ziemann, P. Arrays of quasi-hexagonally ordered silica nanopillars with independently controlled areal density, diameter and height gradients. Nanotechnology 2015, 26, 115301.

52

Müller, M. B.; Kuttner, C.; König, T. A. F.; Tsukruk, V. V.; Förster, S.; Karg, M.; Fery, A. Plasmonic library based on substrate-supported gradiential plasmonic arrays. ACS Nano 2014, 8, 9410–9421.

53

Udayabhaskararao, T.; Altantzis, T.; Houben, L.; Coronado-Puchau, M.; Langer, J.; Popovitz-Biro, R.; Liz-Marzán, L. M.; Vuković, L.; Král, P.; Bals, S. et al. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science 2017, 358, 514–518.

54

Benkovičová, M.; Hološ, A.; Nádaždy, P.; Halahovets, Y.; Kotlár, M.; Kollár, J.; Šiffalovič, P.; Jergel, M.; Majková, E.; Mosnáček, J. et al. Tailoring the interparticle distance in Langmuir nanoparticle films. Phys. Chem. Chem. Phys. 2019, 21, 9553–9563.

55

Chai, Y.; Lukito, A.; Jiang, Y. F.; Ashby, P. D.; Russell, T. P. Fine-tuning nanoparticle packing at water–oil interfaces using ionic strength. Nano Lett. 2017, 17, 6453–6457.

56

Malysheva, O.; Tang, T.; Schiavone, P. Adhesion between a charged particle in an electrolyte solution and a charged substrate: Electrostatic and van der Waals interactions. J. Colloid Interface Sci. 2008, 327, 251–260.

57

Zhu, X. Z.; Zhuo, X. L.; Li, Q.; Yang, Z.; Wang, J. F. Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability. Adv. Funct. Mater. 2016, 26, 341–352.

58

Fung, M. K.; Li, Y. Q.; Liao, L. S. Tandem organic light-emitting diodes. Adv. Mater. 2016, 28, 10381–10408.

59

Li, J. P.; Hu, Y.; Liang, X. H.; Chen, J. M.; Zhong, L. B.; Liao, L. S.; Jiang, L.; Fuchs, H.; Wang, W. C.; Wang, Y. D. et al. Micro organic light emitting diode arrays by patterned growth on structured polypyrrole. Adv. Opt. Mater. 2020, 8, 1902105.

60

Chen, C. C.; Chang, C. C.; Li, Z.; Levi, A. F. J.; Cronin, S. B. Gate tunable graphene-silicon Ohmic/Schottky contacts. Appl. Phys. Lett. 2012, 101, 223113.

61

Liu, Y.; Huang, Y.; Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333.

Nano Research
Pages 6713-6720
Cite this article:
Li D, Sun Y, Wang Y, et al. Facile fabrication of a single-particle platform with high throughput via substrate surface potential regulated large-spacing nanoparticle assembly. Nano Research, 2022, 15(7): 6713-6720. https://doi.org/10.1007/s12274-022-4296-4
Topics:

1069

Views

4

Crossref

4

Web of Science

4

Scopus

1

CSCD

Altmetrics

Received: 15 December 2021
Revised: 05 March 2022
Accepted: 06 March 2022
Published: 30 April 2022
© Tsinghua University Press 2022
Return