Journal Home > Volume 15 , Issue 7

Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g−1·h−1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS2 with SV could generate favorable water adsorption energy (Ead(H2O)) and Gibbs free energy of hydrogen adsorption (∆GH). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution

Show Author's information Mingming Liu1,§Hengxu Li1,§Shijie Liu1,§Longlu Wang1( )Lingbin Xie2Zechao Zhuang3Chun Sun1Jin Wang1( )Meng Tang1Shujiang Sun1Shujuan Liu2Qiang Zhao1,2( )
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
Department of Chemistry, Tsinghua University, Beijing 100084, China

§ Mingming Liu, Hengxu Li, and Shijie Liu contributed equally to this work.

Abstract

Heteroatom doping is a promising approach to enhance catalytic activity by modulating physical properties, electronic structure, and reaction pathway. Herein, we demonstrate that appropriate Ni-doping could trigger a preferential transition of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo) by inducing lattice distortion and S vacancy (SV) and thus dramatically facilitate its catalytic hydrogen evolution activity. It is noteworthy that the unique catalysts did possess superior catalytic performance of hydrogen evolution reaction (HER). The rate of photocatalytic hydrogen evolution could reach 20.45 mmol·g−1·h−1 and reduced only slightly in the long period of the photocatalytic process. First-principles calculations reveal that the distorted Ni-1T′-MoS2 with SV could generate favorable water adsorption energy (Ead(H2O)) and Gibbs free energy of hydrogen adsorption (∆GH). This work exhibits a facile and promising pathway for synergistically regulating physical properties, electronic structure, or wettability based on the doping strategy for designing HER electrocatalysts.

Keywords: electronic structure, phase transformation, hydrogen evolution, S vacancy, Ni doping

References(44)

1

Li, Y.; Gu, Q. F.; Johannessen, B.; Zheng, Z.; Li, C.; Luo, Y. T.; Zhang, Z. Y.; Zhang, Q.; Fan, H. N.; Luo, W. B. et al. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy 2021, 84, 105898.

2

Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu, B. L. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat. Commun. 2020, 11, 3724.

3
Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.
4

Xia, Z. H.; Guo, S. J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev. 2019, 48, 3265–3278.

5

Xu, X.; Liang, T.; Kong, D.; Wang, B.; Zhi, L. Strain engineering of two-dimensional materials for advanced electrocatalysts. Mater. Today Nano 2021, 14, 100111.

6

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

7

Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; Xiang, S. H.; Rodriguez, P.; Xiang, B. et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467.

8

Huang, Y. C.; Sun, Y. H.; Zheng, X. L.; Aoki, T.; Pattengale, B.; Huang, J. E.; He, X.; Bian, W.; Younan, S.; Williams, N. et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982.

9

Pattengale, B.; Huang, Y. C.; Yan, X. X.; Yang, S. Z.; Younan, S.; Hu, W. H.; Li, Z. D.; Lee, S.; Pan, X. Q.; Gu, J. et al. Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution. Nat. Commun. 2020, 11, 4114.

10

Ji, X. X.; Lin, Y. H.; Zeng, J.; Ren, Z. H.; Lin, Z. J.; Mu, Y. B.; Qiu, Y. J.; Yu, J. Graphene/MoS2/FeCoNi(OH)x and Graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nat. Commun. 2021, 12, 1380.

11

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

12

Liu, G. L.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 2017, 9, 810–816.

13

Sun, Y. Q.; Li, X. L.; Zhang, T.; Xu, K.; Yang, Y. S.; Chen, G. Z.; Li, C. C.; Xie, Y. Nitrogen-incorporated cobalt diselenide with cubic phase maintaining for enhanced alkaline hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 21575–21582.

14

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

15

Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhao, Q. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution. Chem. Eng. J. 2021, 405, 127028.

16

Cai, J. L.; Ding, J.; Wei, D. H.; Xie, X.; Li, B. J.; Lu, S. Y.; Zhang, J. M.; Liu, Y. S.; Cai, Q.; Zang, S. Q. Coupling of Ru and O-vacancy on 2D Mo-based electrocatalyst via a solid-phase interface reaction strategy for hydrogen evolution reaction. Adv. Energy Mater. 2021, 11, 2100141.

17

Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

18

Tang, Q.; Jiang, D. E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016, 6, 4953–4961.

19

Miao, J. W.; Xiao, F. X.; Yang, H. B.; Khoo, S. Y.; Chen, J. Z.; Fan, Z. X.; Hsu, Y. Y.; Chen, H. M.; Zhang, H.; Liu, B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci. Adv. 2015, 1, e1500259.

20

Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.

21

Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 2015, 6, 8311.

22

Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M. W.; Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317.

23
Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4158-0.
24

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

25

Han, Y. X.; Kong, C.; Hou, L. J.; Wu, B. W.; Zhang, Q.; Geng, Z. Y. Theoretical research on the effect of eosin Y adsorption action on Ru4 and Pt4 clusters on the hydrogen evolution performance. Comput. Theor. Chem. 2018, 1142, 15–20.

26

Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Single-atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

27

Lai, Z. C.; He, Q. Y.; Tran, T. H.; Repaka, D. V. M.; Zhou, D. D.; Sun, Y.; Xi, S. B.; Li, Y. X.; Chaturvedi, A.; Tan, C. L. et al. Metastable 1Tʹ-phase group VIB transition metal dichalcogenide crystals. Nat. Mater. 2021, 20, 1113–1120.

28

Ekspong, J.; Sandström, R.; Rajukumar, L. P.; Terrones, M.; Wågberg, T.; Gracia-Espino, E. Stable sulfur-intercalated 1Tʹ MoS2 on graphitic nanoribbons as hydrogen evolution electrocatalyst. Adv. Funct. Mater. 2018, 28, 1802744.

29

Chen, X. Y.; Wang, Z. M.; Wei, Y. Z.; Zhang, X.; Zhang, Q. H.; Gu, L.; Zhang, L. J.; Yang, N. L.; Yu, R. B. High phase-purity 1T-MoS2 ultrathin nanosheets by a spatially confined template. Angew. Chem., Int. Ed. 2019, 58, 17621–17624.

30

Cao, D. F.; Ye, K.; Moses, O. A.; Xu, W. J.; Liu, D. B.; Song, P.; Wu, C. Q.; Wang, C. D.; Ding, S. Q.; Chen, S. M. et al. Engineering the in-plane structure of metallic phase molybdenum disulfide via Co and O dopants toward efficient alkaline hydrogen evolution. ACS Nano 2019, 13, 11733–11740.

31

Gao, B.; Zhao, Y. W.; Du, X. Y.; Li, D.; Ding, S. J.; Li, Y. H.; Xiao, C. H.; Song, Z. X. Electron injection induced phase transition of 2H to 1T MoS2 by cobalt and nickel substitutional doping. Chem. Eng. J. 2021, 411, 128567.

32
Cheng, Y.; Sun, Y.; Chu, C. T.; Chang, L. M.; Wang, Z. M.; Zhang, D. Y.; Liu, W. Q.; Zhuang, Z. C.; Wang, L. M. Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res., in press, https://doi.org/ 10.1007/s12274-021-4035-2.
33

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

34

Hu, X. Y.; Zhang, Q.; Yu, S. S. Theoretical insight into the hydrogen adsorption on MoS2 (MoSe2) monolayer as a function of biaxial strain/external electric field. Appl. Surf. Sci. 2019, 478, 857–865.

35

Zhou, W. D.; Jiang, Z. Z.; Chen, M. Y.; Li, Z. H.; Luo, X. F.; Guo, M. M.; Yang, Y.; Yu, T.; Yuan, C. L.; Wang, S. G. Directly anchoring non-noble metal single atoms on 1T-TMDs with tip structure for efficient hydrogen evolution. Chem. Eng. J. 2022, 428, 131210.

36

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, Y. M. L.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

37

Gao, G. P.; Sun, Q.; Du, A. J. Activating catalytic inert basal plane of molybdenum disulfide to optimize hydrogen evolution activity via defect doping and strain engineering. J. Phys. Chem. C 2016, 120, 16761–16766.

38

Liu, M. Q.; Wang, J. A.; Klysubun, W.; Wang, G. G.; Sattayaporn, S.; Li, F.; Cai, Y. W.; Zhang, F. C.; Yu, J.; Yang, Y. Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nat. Commun. 2021, 12, 5260.

39

Duan, H. L.; Wang, C.; Li, G. N.; Tan, H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis. Angew. Chem., Int. Ed. 2021, 133, 7327–7334.

40

Liu, Z. L.; Li, B. Q.; Feng, Y. J.; Jia, D. C.; Li, C. C.; Sun, Q. F.; Zhou, Y. Strong electron coupling of Ru and vacancy-rich carbon dots for synergistically enhanced hydrogen evolution reaction. Small 2021, 17, 2102496.

41

Zhang, P.; Xiang, H. Y.; Tao, L.; Dong, H. J.; Zhou, Y. G.; Hu, T. S.; Chen, X. L.; Liu, S.; Wang, S. Y.; Garaj, S. Chemically activated MoS2 for efficient hydrogen production. Nano Energy 2019, 57, 535–541.

42

Guo, S. H.; Li, X. H.; Li, J.; Wei, B. Q. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nat. Commun. 2021, 12, 1343.

43

Xin, X.; Song, Y. R.; Guo, S. H.; Zhang, Y. Z.; Wang, B. L.; Yu, J. K.; Li, X. H. In-situ growth of high-content 1T phase MoS2 confined in the CuS nanoframe for efficient photocatalytic hydrogen evolution. Appl. Catal. B 2020, 269, 118773.

44

Liang, D.; Zhang, Y. W.; Lu, P. F.; Yu, Z. G. Strain and defect engineered monolayer Ni-MoS2 for pH-universal hydrogen evolution catalysis. Nanoscale 2019, 11, 18329–18337.

File
12274_2022_4267_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 February 2022
Revised: 18 February 2022
Accepted: 21 February 2022
Published: 02 May 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Funds for Distinguished Young Scientists (No. 61825503), the National Natural Science Foundation of China (Nos. 51902101, 61775101, and 61804082), the Natural Science Foundation of Jiangsu Province (Nos. BK20201381 and BK20210577), the Science Foundation of Nanjing University of Posts and Telecommunications (No. NY219144), and the National College Student Innovation and Entrepreneurship Training Program.

Return