Journal Home > Volume 15 , Issue 7

Solid-state batteries (SSBs) will potentially offer increased energy density and, more importantly, improved safety for next generation lithium-ion (Li-ion) batteries. One enabling technology is solid-state composite cathodes with high operating voltage and area capacity. Current composite cathode manufacturing technologies, however, suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives. Here, we report a liquid-phase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design, which eventually contribute to high area capacity. A small amount (~ 4 wt.%) of lithium hydroxide (LiOH) and boric acid (H3BO3) with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi0.8Mn0.1Co0.1 (NMC811) particles at a moderately elevated temperature (~ 350 °C) in a liquid state, which not only enable intimate physical contact but also promote the densification process. In addition, the liquid-phase additives react and transform to ionic-conductive lithium boron oxide, together with the indium tin oxide (ITO) nanoparticle coating, mixed ionic-electronic interphases of composite cathode are successfully fabricated. Furthermore, the liquid-phase sintering performed at high-temperature (~ 800 °C) also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture. The promising performance characteristics of such composite cathodes, for example, delivering an area capacity above 8 mAh·cm−2 within a wide voltage window up to 4.4 V, open new opportunities for SSBs with a high energy density of 500 Wh·kg−1 for safer portable electronic and electrical transport.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Liquid-phase sintering enabling mixed ionic-electronic interphases and free-standing composite cathode architecture toward high energy solid-state battery

Show Author's information Xiang Han1Weijun Zhou1Minfeng Chen1Linshan Luo2Lanhui Gu1Qiaobao Zhang4Jizhang Chen1( )Bo Liu3( )Songyan Chen2( )Wenqing Zhang5
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Department of Physics, Xiamen University, Xiamen 361005, China
College of Mathematics and Physics, Jinggangshan University, Ji’an 343009, China
Department of Materials Science and Engineering, College of Materials, Xiamen 361005, China
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Solid-state batteries (SSBs) will potentially offer increased energy density and, more importantly, improved safety for next generation lithium-ion (Li-ion) batteries. One enabling technology is solid-state composite cathodes with high operating voltage and area capacity. Current composite cathode manufacturing technologies, however, suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives. Here, we report a liquid-phase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design, which eventually contribute to high area capacity. A small amount (~ 4 wt.%) of lithium hydroxide (LiOH) and boric acid (H3BO3) with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi0.8Mn0.1Co0.1 (NMC811) particles at a moderately elevated temperature (~ 350 °C) in a liquid state, which not only enable intimate physical contact but also promote the densification process. In addition, the liquid-phase additives react and transform to ionic-conductive lithium boron oxide, together with the indium tin oxide (ITO) nanoparticle coating, mixed ionic-electronic interphases of composite cathode are successfully fabricated. Furthermore, the liquid-phase sintering performed at high-temperature (~ 800 °C) also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture. The promising performance characteristics of such composite cathodes, for example, delivering an area capacity above 8 mAh·cm−2 within a wide voltage window up to 4.4 V, open new opportunities for SSBs with a high energy density of 500 Wh·kg−1 for safer portable electronic and electrical transport.

Keywords: solid-state battery, single-crystal Ni-rich LiNi0.8Mn0.1Co0.1, liquid-phase sintering, mixed ionic-electronic interphases, free-standing architecture

References(61)

1

Fan, L. Z.; He, H. C.; Nan, C. W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019.

2

Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 2020, 15, 170–180.

3

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030.

4

Zhang, Q. B.; Gong, Z. L.; Yang, Y. Advance in interface and characterizations of sulfide solid electrolyte materials. Acta Phys. Sin. 2020, 69, 228803.

5

Huang, Q.; Turcheniuk, K.; Ren, X. L.; Magasinski, A.; Song, A. Y.; Xiao, Y. R.; Kim, D.; Yushin, G. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 2019, 18, 1343–1349.

6

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

7

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

8

Wan, H. L.; Liu, S. F.; Deng, T.; Xu, J. J.; Zhang, J. X.; He, X. Z.; Ji, X.; Yao, X. Y.; Wang, C. S. Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett. 2021, 6, 862–868.

9

Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

10

Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core–shell structuring. Nano Res. 2019, 12, 2460–2467.

11

Shao, Y. J.; Wang, H. C.; Gong, Z. L.; Wang, D. W.; Zheng, B. Z.; Zhu, J. P.; Lu, Y. X.; Hu, Y. S.; Guo, X. X.; Li, H. et al. Drawing a soft interface: An effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 2018, 3, 1212–1218.

12

Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y. T.; Hood, Z. D.; Rupp, J. L. M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239.

13

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

14

Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

15

Kim, U. H.; Park, G. T.; Son, B. K.; Nam, G. W.; Liu, J.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869.

16

Zhang, F.; Lou, S. F.; Li, S.; Yu, Z. J.; Liu, Q. S.; Dai, A.; Cao, C. T.; Toney, M. F.; Ge, M. Y.; Xiao, X. H. et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat. Commun. 2020, 11, 3050.

17

Guo, F. Y.; Xie, Y. F.; Zhang, Y. X. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Res. 2020, 15, 2052–2059.

18

Bi, Y. J.; Tao, J. H.; Wu, Y. Q.; Li, L. Z.; Xu, Y. B.; Hu, E. Y.; Wu, B. B.; Hu, J. T.; Wang, C. M.; Zhang, J. G. et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science 2020, 370, 1313–1317.

19

Tan, D. H. S.; Chen, Y. T.; Yang, H. D.; Bao, W.; Sreenarayanan, B.; Doux, J. M.; Li, W. K.; Lu, B. Y.; Ham, S. Y.; Sayahpour, B. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499.

20

Yi, M. Y.; Li, J.; Fan, X. M.; Bai, M. H.; Zhang, Z.; Hong, B.; Zhang, Z. A.; Hu, G. R.; Jiang, H.; Lai, Y. Q. Single crystal Ni-rich layered cathodes enabling superior performance in all-solid-state batteries with PEO-based solid electrolytes. J. Mater. Chem. A 2021, 9, 16787–16797.

21

Sun, H.; Xie, X. X.; Huang, Q.; Wang, Z. X.; Chen, K. J.; Li, X. L.; Gao, J.; Li, Y. T.; Li, H.; Qiu, J. S. et al. Fluorinated poly-oxalate electrolytes stabilizing both anode and cathode interfaces for all-solid-state Li/NMC811 batteries. Angew. Chem., Int. Edit. 2021, 60, 18335–18343.

22

Liu, X. S.; Zheng, B. Z.; Zhao, J.; Zhao, W. M.; Liang, Z. T.; Su, Y.; Xie, C. P.; Zhou, K.; Xiang, Y. X.; Zhu, J. P. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 2021, 11, 2003583.

23

Randau, S.; Weber, D. A.; Kötz, O.; Koerver, R.; Braun, P.; Weber, A.; Ivers-Tiffée, E.; Adermann, T.; Kulisch, J.; Zeier, W. G. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 2020, 5, 259–270.

24

Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.

25

Li, Y. T.; Chen, X.; Dolocan, A.; Cui, Z. M.; Xin, S.; Xue, L. G.; Xu, H. H.; Park, K.; Goodenough, J. B. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 2018, 140, 6448–6455.

26

Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, 2000399.

27

Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

28

Liu, G. Z.; Shi, J. M.; Zhu, M. T.; Weng, W.; Shen, L.; Yang, J.; Yao, X. Y. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 2021, 38, 249–254.

29

Wan, H. L.; Cai, L. T.; Han, F. D.; Mwizerwa, J. P.; Wang, C. S.; Yao, X. Y. Construction of 3D electronic/ionic conduction networks for all-solid-state lithium batteries. Small 2019, 15, 1905849.

30

Zhang, C. Y.; Liu, S.; Li, G. J.; Zhang, C. J.; Liu, X. J.; Luo, J. Y. Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv. Mater. 2018, 30, 1801328.

31

Yan, Y. Y.; Ju, J. W.; Dong, S. M.; Wang, Y. T.; Huang, L.; Cui, L. F.; Jiang, F.; Wang, Q. L.; Zhang, Y. F.; Cui, G. L. In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 2021, 8, 2003887.

32

Han, X.; Wang, S. Y.; Xu, Y. B.; Zhong, G. M.; Zhou, Y.; Liu, B.; Jiang, X. Y.; Wang, X.; Li, Y.; Zhang, Z. Q. et al. All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries. Energy Environ. Sci. 2021, 14, 5044–5056.

33

Liu, T.; Zhang, Y. B.; Zhang, X.; Wang, L.; Zhao, S. X.; Lin, Y. H.; Shen, Y.; Luo, J.; Li, L. L.; Nan, C. W. Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. J. Mater. Chem. A 2018, 6, 4649–4657.

34

Han, F. D.; Yue, J.; Chen, C.; Zhao, N.; Fan, X. L.; Ma, Z. H.; Gao, T.; Wang, F.; Guo, X. X.; Wang, C. S. Interphase engineering enabled all-ceramic lithium battery. Joule 2018, 2, 497–508.

35

Zhang, Q.; Cao, D. X.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H. L. Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 2019, 31, 1901131.

36

Gellert, M.; Dashjav, E.; Grüner, D.; Ma, Q. L.; Tietz, F. Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate. Ionics 2018, 24, 1001–1006.

37

Feng, W. L.; Lai, Z. Z.; Dong, X. L.; Li, P. L.; Wang, Y. G.; Xia, Y. Y. Garnet-based all-ceramic lithium battery enabled by Li2.985B0.005OCl solder. iScience 2020, 23, 101071.

38

Xiao, Y. R.; Turcheniuk, K.; Narla, A.; Song, A. Y.; Ren, X. L.; Magasinski, A.; Jain, A.; Huang, S.; Lee, H.; Yushin, G. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 2021, 20, 984–990.

39

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

40

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

41

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

42
Liu, B.; Xu, B.; Wu, M.; Ouyang, C. Y. First-principles GGA+U study on structural and electronic properties in LiMn0.5Ni0.5O2, LiMn0.5Co0.5O2 and LiCo0.5Ni0.5O2. Int. J. Electrochem. Sci. 2016, 11, 432–445.
43

Grimme, S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem 2004, 25, 1463–1473.

44

Shi, S. Q.; Gao, J.; Liu, Y.; Zhao, Y.; Wu, Q.; Ju, W. W.; Ouyang, C. Y.; Xiao, R. J. Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chin. Phys. B 2015, 25, 018212.

45

He, B.; Chi, S. T.; Ye, A. J.; Mi, P. H.; Zhang, L. W.; Pu, B. W.; Zou, Z. Y.; Ran, Y. B.; Zhao, Q.; Wang, D. et al. High-throughput screening platform for solid electrolytes combining hierarchical ion-transport prediction algorithms. Sci. Data 2020, 7, 151.

46

Elalaoui, A. E.; Maillard, A.; Fontana, M. D. Raman scattering and non-linear optical properties in Li2B4O7. J. Phys.: Condens. Matter 2015, 17, 7441.

47

Osipov, A. A.; Osipova, L. M. Structure of lithium borate glasses and melts: Investigation by high temperature Raman spectroscopy. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B 2009, 50, 343–354.

48

Tatsumisago, M.; Takahashi, M.; Minami, T.; Tanaka, M.; Umesaki, N.; Iamoto, N. Structural investigation of rapidly quenched Li2O-B2O3 glasses by Raman spectroscopy. Yogyo Kyokaishi 1986, 94, 464–469.

49
Rahaman, M. N. Ceramic Processing, 2nd ed.; CRC Press: Boca Raton, 2017.
50

Park, M.; Zhang, X. C.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929.

51

Marzec, J.; Świerczek, K.; Przewoźnik, J.; Molenda, J.; Simon, D.; Kelder, E.; Schoonman, J. Conduction mechanism in operating a LiMn2O4 cathode. Solid State Ionics 2002, 146, 225–237.

52

Wang, S. L.; Lin, C. H.; Yan, Y. Y.; Wang, M. K. Synthesis of Li/Al LDH using aluminum and LiOH. Appl. Clay Sci. 2013, 72, 191–195.

53

Qu, J.; He, X. M.; Wang, B. T.; Zhong, L. H.; Wan, L.; Li, X. W.; Song, S. X.; Zhang, Q. W. Synthesis of Li-Al layered double hydroxides via a mechanochemical route. Appl. Clay Sci. 2016, 120, 24–27.

54

Zhang, Y. B.; Sun, X.; Cao, D. X.; Gao, G. H.; Yang, Z. Z.; Zhu, H. L.; Wang, Y. Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH. Energy Storage Mater. 2021, 41, 505–514.

55

Pei, B.; Zhou, H.; Goel, A.; Zuba, M.; Liu, H.; Xin, F. X.; Whittingham, M. S. Al substitution for Mn during Co-precipitation boosts the electrochemical performance of LiNi0.8Mn0.1Co0.1O2. J. Electrochem. Soc. 2021, 168, 050532.

56

Deng, S. X.; Li, X.; Ren, Z. H.; Li, W. H.; Luo, J.; Liang, J. W.; Liang, J. N.; Banis, M. N.; Li, M. S.; Zhao, Y. et al. Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Mater. 2020, 27, 117–123.

57

Niu, C. Q.; Luo, W. J.; Dai, C. M.; Yu, C. B.; Xu, Y. X. High-voltage‐tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem., Int. Edit. 2021, 60, 24915–24923.

58

Shrestha, S.; Kim, J.; Jeong, J.; Lee, H.; Kim, S. C.; Hah, H. J.; Oh, K.; Lee, S. Effect of amorphous LiPON coating on electrochemical performance of LiNi0.8Mn0.1Co0.1O2 (NMC811) in all solid-state batteries. J. Electrochem. Soc. 2021, 168, 060537.

59

Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.

60

Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.

61

Yoon, M.; Dong, Y. H.; Hwang, J.; Sung, J.; Cha, H.; Ahn, K.; Huang, Y. M.; Kang, S. J.; Li, J.; Cho, J. Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 2021, 6, 362–371.

File
12274_2022_4242_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 December 2021
Revised: 24 January 2022
Accepted: 15 February 2022
Published: 24 March 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This research was supported by Natural Science Foundation of Jiangsu Province (No. BK20200800), the National Natural Science Foundation of China (Nos. 51902165, 12004145, 52072323, and 52122211), Natural Science Foundation of Jiangxi Province (Nos. 20192ACBL2004 and 20212BAB214032), and Nanjing Science & Technology Innovation Project for Personnel Studying Abroad. Part of the calculations were supported by the Center for Computational Science and Engineering at Southern University of Science and Technology, and high-performance computing platform of Jinggangshan University.

Return