Journal Home > Volume 15 , Issue 7

Colloidal quantum-dot (QD) light-emitting diodes (QLEDs) have been in the forefront of future display devices due to their outstanding optoelectronic properties. However, a complicated solution-process for patterning the red, green, and blue QDs deteriorates the QLED performance and limits the resolution of full-color displays. Herein, we report a novel concept of QD–organic hybrid light-emitting diodes by introducing an organic blue common layer (BCL) which is deposited through a common mask over the entire sub-pixels. Benefitted from the optimized device structure, red and green QLEDs retained their color coordinates despite the presence of the BCL. Furthermore, adopting the BCL improved the external quantum efficiency of green and red QLEDs by 38.4% and 11.7%, respectively, due to the Förster resonance energy transfer from the BCL to the adjacent QD layers. With the BCL structure, we could simply demonstrate a full-color QD–organic hybrid device in a single substrate. We believe that this device architecture is practically applicable for easier fabrication of solution-processed, high-resolution, and full-color displays with reduced process steps.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quantum-dot and organic hybrid light-emitting diodes employing a blue common layer for simple fabrication of full-color displays

Show Author's information Suhyeon Lee1,2Donghyo Hahm3Suk-Young Yoon4Heesun Yang4Wan Ki Bae3Jeonghun Kwak1,2( )
Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
Inter-university Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Republic of Korea
SKKU Advanced Institute of Nanotechnology (SAINT), School of Nano Science & Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea

Abstract

Colloidal quantum-dot (QD) light-emitting diodes (QLEDs) have been in the forefront of future display devices due to their outstanding optoelectronic properties. However, a complicated solution-process for patterning the red, green, and blue QDs deteriorates the QLED performance and limits the resolution of full-color displays. Herein, we report a novel concept of QD–organic hybrid light-emitting diodes by introducing an organic blue common layer (BCL) which is deposited through a common mask over the entire sub-pixels. Benefitted from the optimized device structure, red and green QLEDs retained their color coordinates despite the presence of the BCL. Furthermore, adopting the BCL improved the external quantum efficiency of green and red QLEDs by 38.4% and 11.7%, respectively, due to the Förster resonance energy transfer from the BCL to the adjacent QD layers. With the BCL structure, we could simply demonstrate a full-color QD–organic hybrid device in a single substrate. We believe that this device architecture is practically applicable for easier fabrication of solution-processed, high-resolution, and full-color displays with reduced process steps.

Keywords: quantum-dot light-emitting diode (QLEDs), organic light-emitting diode, blue common layer, full-color display, reduced process step

References(45)

1

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

2

Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23.

3

Cho, I.; Jung, H.; Jeong, B. G.; Chang, J. H.; Kim, Y.; Char, K.; Lee, D. C.; Lee, C.; Cho, J.; Bae, W. K. Multifunctional dendrimer ligands for high-efficiency, solution-processed quantum dot light-emitting diodes. ACS Nano 2017, 11, 684–692.

4

Zhang, H.; Sun, X. W.; Chen, S. M. Over 100 cd·A−1 efficient quantum dot light-emitting diodes with inverted tandem structure. Adv. Funct. Mater. 2017, 27, 1700610.

5

Jang, H. J.; Lee, J. Y.; Kwak, J.; Lee, D.; Park, J. H.; Lee, B.; Noh, Y. Y. Progress of display performances: AR, VR, QLED, OLED, and TFT. J. Inf. Disp. 2019, 20, 1–8.

6

Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

7

Acharya, K. P.; Titov, A.; Hyvonen, J.; Wang, C. G.; Tokarz, J.; Holloway, P. H. High efficiency quantum dot light emitting diodes from positive aging. Nanoscale 2017, 9, 14451–14457.

8

Jeong, B. G.; Chang, J. H.; Hahm, D.; Rhee, S.; Park, M.; Lee, S.; Kim, Y.; Shin, D.; Park, J. W.; Lee, C. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 2022, 21, 246.

9

Shen, H. B.; Gao, Q.; Zhang, Y. B.; Lin, Y.; Lin, Q. L.; Li, Z. H.; Chen, L.; Zeng, Z. P.; Li, X. G.; Jia, Y. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 2019, 13, 192–197.

10

Song, J. J.; Wang, O. Y.; Shen, H. B.; Lin, Q. L.; Li, Z. H.; Wang, L.; Zhang, X. T.; Li, L. S. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 2019, 29, 1808377.

11

Won, Y. H.; Cho, O.; Kim, T.; Chung, D. Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638.

12

Zhang, H.; Su, Q.; Chen, S. M. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun. 2020, 11, 2826.

13

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang. E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

14

Yang, X. Y.; Mutlugun, E.; Dang, C.; Dev, K.; Gao, Y.; Tan, S. T.; Sun, X. W.; Demir, H. V. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers. ACS Nano 2014, 8, 8224–8231.

15

Choi, M. K.; Yang, J.; Kang, K.; Kim, D. C.; Choi, C.; Park, C.; Kim, S. J.; Chae, S. I.; Kim, T. H.; Kim, J. H. et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149.

16

Dai, X. L.; Deng, Y. Z.; Peng, X. G.; Jin, Y. Z. Quantum-dot light-emitting diodes for large-area displays: Towards the dawn of commercialization. Adv. Mater. 2017, 29, 1607022.

17

Li, F.; Shen, J. L.; Liu, X. F.; Cao, Z. H.; Cai, X.; Li, J. L.; Ding, K.; Liu, J. K.; Tu, G. L. Flexible QLED and OPV based on transparent polyimide substrate with rigid alicyclic asymmetric isomer. Org. Electron. 2017, 51, 54–61.

18

Choi, M. K.; Yang, J.; Hyeon, T.; Kim, D. H. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron. 2018, 2, 10.

19

Kim, S. H.; Baek, G. W.; Yoon, J.; Seo, S.; Park, J.; Hahm, D.; Chang, J. H.; Seong, D.; Seo, H.; Oh, S. et al. A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 2021, 33, 2104690.

20

Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12, 2362–2366.

21

Zou, Y. T.; Ban, M. Y.; Cui, W.; Huang, Q.; Wu, C.; Liu, J. W.; Wu, H. H.; Song, T.; Sun, B. Q. A general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diode. Adv. Funct. Mater. 2017, 27, 1603325.

22

Sun, Y. Z.; Jiang, Y. B.; Sun, X. W.; Zhang, S. D.; Chen, S. M. Beyond OLED: Efficient quantum dot light-emitting diodes for display and lighting application. Chem. Rec. 2019, 19, 1729–1752.

23

Kim, L.; Anikeeva, P. O.; Coe-Sullivan, S. A.; Steckel, J. S.; Bawendi, M. G.; Bulović, V. Contact printing of quantum dot light-emitting devices. Nano Lett. 2008, 8, 4513–4517.

24

Cho, H.; Kwak, J.; Lim, J.; Park, M.; Lee, D.; Bae, W. K.; Kim, Y. S.; Char, K.; Lee, S.; Lee, C. Soft contact transplanted nanocrystal quantum dots for light-emitting diodes: Effect of surface energy on device performance. ACS Appl. Mater. Interfaces 2015, 7, 10828–10833.

25

Mei, W. H.; Zhang, Z. Q.; Zhang, A. D.; Li, D.; Zhang, X. Y.; Wang, H. W.; Chen, Z.; Li, Y. Z.; Li, X. G.; Xu, X. G. High-resolution, full-color quantum dot light-emitting diode display fabricated via photolithography approach. Nano Res. 2020, 13, 2485–2491.

26

Xiang, C. Y.; Wu, L. J.; Lu, Z. Z.; Li, M. L.; Wen, Y. W.; Yang, Y. X.; Liu, W. Y.; Zhang, T.; Cao, W. R.; Tsang, S. W. et al. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020, 11, 1646.

27

Roh, H.; Ko, D.; Shin, D. Y.; Chang, J. H.; Hahm, D.; Bae, W. K.; Lee, C.; Kim, J. Y.; Kwak, J. Enhanced performance of pixelated quantum dot light-emitting diodes by inkjet printing of quantum dot-polymer composites. Adv. Opt. Mater. 2021, 9, 2002129.

28

Xiong, X. Y.; Wei, C. T.; Xie, L. M.; Chen, M.; Tang, P. Y.; Shen, W.; Deng, Z. T.; Li, X.; Duan, Y. J.; Su, W. M. et al. Realizing 17.0% external quantum efficiency in red quantum dot light-emitting diodes by pursuing the ideal inkjet-printed film and interface. Org. Electron. 2019, 73, 247–254.

29

Sun, W.; Xie, L.; Guo, X.; Su, W.; Zhang, Q. Photocross-linkable hole transport materials for inkjet-printed high-efficient quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 58369.

30

Chen, M.; Xie, L. M.; Wei, C. T.; Yi, Y. Q. Q.; Chen, X. L.; Yang, J.; Zhuang, J. Y.; Li, F. S.; Su, W. M.; Cui, Z. High performance inkjet-printed QLEDs with 18. 3% EQE: Improving interfacial contact by novel halogen-free binary solvent system. Nano Res. 2021, 14, 4125–4131.

31

Kim, M. H.; Song, M. W.; Lee, S. T.; Kim, H. D.; Oh, J. S.; Chung, H. K. Control of emission zone in a full color AMOLED with a blue common layer. SID Int. Symp. Dig. Tech. Papers 2006, 37, 135–138.

32

Matsumoto, T.; Yoshinaga, T.; Higo, T.; Imai, T.; Hirano, T.; Sasaoka, T. High-performance solution-processed OLED enhanced by evaporated common layer. SID Int. Symp. Dig. Tech. Papers 2011, 42, 924–927.

33

Chen, S. M.; Kwok, H. S. Full color organic electroluminescent display with shared blue light-emitting layer for reducing one fine metal shadow mask. Org. Electron. 2012, 13, 31–35.

34

Shin, H. Y.; Suh, M. C. A study on full color organic light emitting diodes with blue common layer under the patterned emission layer. Org. Electron. 2014, 15, 2932–2941.

35

Lee, H.; Kwak, J.; Kang, C. M.; Lyu, Y. Y.; Char, K.; Lee, C. Trap-level-engineered common red layer for fabricating red, green, and blue subpixels of full-color organic light-emitting diode displays. Opt. Express 2015, 23, 11424–11435.

36

Cho, Y. R.; Kim, H. S.; Yu, Y. J.; Suh, M. C. Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure. Sci. Rep. 2015, 5, 15903.

37

Rhee, S.; Chang, J. H.; Hahm, D.; Jeong, B. G.; Kim, J.; Lee, H.; Lim, J.; Hwang, E.; Kwak, J.; Bae, W. K. Tailoring the electronic landscape of quantum dot light-emitting diodes for high brightness and stable operation. ACS Nano 2020, 14, 17496–17504.

38

Park, H.; Lee, J.; Kang, I.; Chu, H. Y.; Lee, J. I.; Kwon, S. K.; Kim, Y. H. Highly rigid and twisted anthracene derivatives: A strategy for deep blue OLED materials with theoretical limit efficiency. J. Mater. Chem. 2012, 22, 2695–2700.

39

Kim, N. H.; Kim, Y. H.; Yoon, J. A.; Lee, S. Y.; Ryu, D. H.; Wood, R.; Moon, C. B.; Kim, W. Y. Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants. J. Lumin. 2013, 143, 723–728.

40

Su, S. J.; Chiba, T.; Takeda, T.; Kido, J. Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Adv. Mater. 2008, 20, 2125–2130.

41

Lee, D. H.; Liu, Y. P.; Lee, K. H.; Chae, H.; Cho, S. M. Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes. Org. Electron. 2010, 11, 427–433.

42

James, D. R.; Liu, Y. S.; De Mayo, P.; Ware, W. R. Distributions of fluorescence lifetimes: Consequences for the photophysics of molecules adsorbed on surfaces. Chem. Phys. Lett. 1985, 120, 460–465.

43

Tan, Y. Z.; Xiao, X. T.; Gui, S. Z.; Sun, J. Y.; Ye, T. K.; Ma, J. R.; Wang, Z. J.; Qiu, M. X.; Sun, X. W.; Wu, D. et al. Analyzing and modulating energy transfer in ternary-emissive system of quantum dot light-emitting diodes towards efficient emission. Opt. Express 2021, 29, 36964–36976.

44

Lim, J.; Jeong, B. G.; Park, M.; Kim, J. K.; Pietryga, J. M.; Park, Y. S.; Klimov, V. I.; Lee, C.; Lee, D. C.; Bae, W. K. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1−xCdxS core/shell heterostructured quantum dots. Adv. Mater. 2014, 26, 8034–8040.

45

Lee, K. H.; Han, C. Y.; Kang, H. D.; Ko, H.; Lee, C.; Lee, J.; Myoung, N.; Yim, S. Y.; Yang, H. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano 2015, 9, 10941–10949.

Video
12274_2022_4204_MOESM2_ESM.mp4
File
12274_2022_4204_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 November 2021
Revised: 25 January 2022
Accepted: 26 January 2022
Published: 28 March 2022
Issue date: July 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the Technology Innovation Program (Nos. 20010371 and 20010737) and the Industrial Core Technology Development Program (No. 10077471) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Return