Journal Home > Volume 15 , Issue 6

Triazine herbicides have been widely used in agriculture, but their residues can harm the environment and human health. To help monitor these, we have developed an effective immunochromatographic strip test that can simultaneously detect 15 different triazines in grain samples (including ametryn, cyprazine, atraton, prometon, prometryn, atrazine, propazine, terbuthylazine, simetryn, trietazine, secbumeton, simazine, desmetryn, terbumeton and simetone). Based on our optimization procedure, the visual limit of detection (vLOD) for these triazines was found to be 2–10 ng/mL in assay buffer, and 0.02–0.1 mg/kg in grain samples. Four different grain matrices including corn, brown rice, wheat, and sorghum were studied and the test results showed no significant differences between the 15 triazines analyzed using this method. This test is simple, convenient, rapid, and low-cost, and could be an effective tool for primary screening of triazine residues in grain samples.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multiple detection of 15 triazine herbicides by gold nanoparticle based-paper sensor

Show Author's information Lingling Guo1,2Xinxin Xu1,2Jing Zhao3Shudong Hu3Liguang Xu1,2Hua Kuang1,2( )Chuanlai Xu1,2( )
State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Department of Radiology, Affiliated Hospital, Jiangnan University, Wuxi 214122, China

Abstract

Triazine herbicides have been widely used in agriculture, but their residues can harm the environment and human health. To help monitor these, we have developed an effective immunochromatographic strip test that can simultaneously detect 15 different triazines in grain samples (including ametryn, cyprazine, atraton, prometon, prometryn, atrazine, propazine, terbuthylazine, simetryn, trietazine, secbumeton, simazine, desmetryn, terbumeton and simetone). Based on our optimization procedure, the visual limit of detection (vLOD) for these triazines was found to be 2–10 ng/mL in assay buffer, and 0.02–0.1 mg/kg in grain samples. Four different grain matrices including corn, brown rice, wheat, and sorghum were studied and the test results showed no significant differences between the 15 triazines analyzed using this method. This test is simple, convenient, rapid, and low-cost, and could be an effective tool for primary screening of triazine residues in grain samples.

Keywords: gold nanoparticles, triazine herbicides, immunochromatographic strip, grain

References(52)

1

Fingler, S.; Mendaš, G.; Dvoršćak, M.; Stipičević, S.; Vasilić, Ž.; Drevenkar, V. Herbicide micropollutants in surface, ground and drinking waters within and near the area of Zagreb, Croatia. Environ. Sci. Pollut. Res. 2017, 24, 11017–11030.

2

Parker, E. T.; Owen, M. D. K.; Bernards, M. L.; Curran, W. S.; Steckel, L. E.; Mueller, T. C. A comparison of symmetrical and asymmetrical triazine herbicides for enhanced degradation in three midwestern soils. Weed Sci. 2018, 66, 673–679.

3

Saka, M.; Tada, N.; Kamata, Y. Chronic toxicity of 1, 3, 5-triazine herbicides in the postembryonic development of the western clawed frog Silurana tropicalis. Ecotoxicol. Environ. Saf. 2018, 147, 373–381.

4

Rimayi, C.; Odusanya, D.; Weiss, J. M.; de Boer, J.; Chimuka, L. Seasonal variation of chloro-s-triazines in the Hartbeespoort Dam catchment, South Africa. Sci. Total Environ. 2018, 613−614, 472–482.

5

Brandhonneur, N.; De Sousa Mendes, M.; Lepvrier, E.; Esseiva, E. F.; Chevanne, F.; Le Corre, P. A micro-QuEChERS method coupled to GC-MS for the quantification of pesticides in specific maternal and fetal tissues. J. Pharm. Biomed. Anal. 2015, 104, 90–96.

6

Masís-Mora, M.; Beita-Sandí, W.; Rodríguez-Yáñez, J.; Rodríguez-Rodríguez, C. E. Validation of a methodology by LC-MS/MS for the determination of triazine, triazole and organophosphate pesticide residues in biopurification systems. J. Chromatogr. B 2020, 1156, 122296.

7

De O. Silva, R.; De Menezes, M. G. G.; De Castro, R. C.; De A. Nobre, C.; Milhome, M. A. L.; Do Nascimento, R. F. Efficiency of ESI and APCI ionization sources in LC-MS/MS systems for analysis of 22 pesticide residues in food matrix. Food Chem. 2019, 297, 124934.

8

Wang, S. S.; She, Y. X.; Hong, S. H.; Du, X. W.; Yan, M. M.; Wang, Y. L.; Qi, Y.; Wang, M.; Jiang, W. Y.; Wang, J. Dual-template imprinted polymers for class-selective solid-phase extraction of seventeen triazine herbicides and metabolites in agro-products. J. Hazard. Mater. 2019, 367, 686–693.

9

Xiao, X. Y.; Hu, S.; Lai, X. C.; Peng, J.; Lai, W. H. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci. Technol. 2021, 111, 68–88.

10

Poungmalai, P.; Buakeaw, A.; Puthong, S.; Khongchareonporn, N. A specific monoclonal antibody for chlortetracycline detection in milk and honey samples based on ELISA. Food Agric. Immunol. 2021, 32, 163–173.

11

Lei, X. L.; Xu, X. X.; Liu, L. Q.; Kuang, H.; Xu, L. G.; Hao, C. L. Immunochromatographic test strip for the rapid detection of tricaine in fish samples. Food Agric. Immunol. 2020, 31, 687–699.

12

Li, Y.; Wang, Z. X.; Sun, L.; Liu, L. Q.; Xu, C. L.; Kuang, H. Nanoparticle-based sensors for food contaminants. TrAC Trends Anal. Chem. 2019, 113, 74–83.

13

Li, Y.; Liu, L. Q.; Xu, C. L.; Kuang, H.; Sun, L. Integration of antibody-antigen and receptor-ligand reactions to establish a gold strip biosensor for detection of 33 β-lactam antibiotics. Sci. China Mater. 2021, 64, 2056–2066.

14

Wang, W. B.; Liu, L. Q.; Song, S. S.; Xu, L. G.; Kuang, H.; Zhu, J. P.; Xu, C. L. Gold nanoparticle-based strip sensor for multiple detection of twelve Salmonella strains with a genus-specific lipopolysaccharide antibody. Sci. China Mater. 2016, 59, 665–674.

15
Zeng, L.; Xu, X. X.; Song, S. S.; Xu, L. G.; Liu, L. Q.; Xiao, J.; Xu, C. L.; Kuang, H. Synthesis of haptens and gold-based immunochromatographic paper sensor for vitamin B6 in energy drinks and dietary supplements. Nano Res. , in press, DOI: 10.1007/s12274-021-3734-z.
16

Zeng, L.; Li, Y.; Liu, J.; Guo, L. L.; Wang, Z. X.; Xu, X. X.; Song, S. S.; Hao, C. L.; Liu, L. Q.; Xin, M. G. et al. Rapid, ultrasensitive and highly specific biosensor for the diagnosis of SARS-CoV-2 in clinical blood samples. Mater. Chem. Front. 2020, 4, 2000–2005.

17

Yee, E. H.; Lathwal, S.; Shah, P. P.; Sikes, H. D. Detection of biomarkers of periodontal disease in human saliva using stabilized, vertical flow immunoassays. ACS Sens. 2017, 2, 1589–1593.

18

Khlebtsov, B. N.; Bratashov, D. N.; Byzova, N. A.; Dzantiev, B. B.; Khlebtsov, N. G. SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags. Nano Res. 2019, 12, 413–420.

19

Pham, X. H.; Hahm, E.; Kim, T. H.; Kim, H. M.; Lee, S. H.; Lee, S. C.; Kang, H.; Lee, H. Y.; Jeong, D. H.; Choi, H. S. et al. Enzyme-amplified SERS immunoassay with Ag-Au bimetallic SERS hot spots. Nano Res. 2020, 13, 3338–3346.

20

Yang, J. X.; Wang, C. H.; Shi, S.; Dong, C. Y. Nanotechnologies for enhancing cancer immunotherapy. Nano Res. 2020, 13, 2595–2616.

21

Kim, E.; Lim, E. K.; Park, G.; Park, C.; Lim, J. W.; Lee, H.; Na, W.; Yeom, M.; Kim, J.; Song, D. et al. Advanced nanomaterials for preparedness against (Re-)emerging viral diseases. Adv. Mater. 2021, 33, 2005927.

22

Zhang, Z. W.; Ma, P.; Ahmed, R.; Wang, J.; Akin, D.; Soto, F.; Liu, B. F.; Li, P. W.; Demirci, U. Advanced point-of-care testing technologies for human acute respiratory virus detection. Adv. Mater. 2021, 34, 2103646.

23

Li, S.; Guo, X.; Gao, R.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Recent progress on biomaterials fighting against viruses. Adv. Mater. 2021, 33, 2005424.

24

Yang, M. Z.; Zhang, W.; Yang, J. C.; Hu, B. F.; Cao, F. J.; Zheng, W. S.; Chen, Y. P.; Jiang, X. Y. Skiving stacked sheets of paper into test paper for rapid and multiplexed assay. Sci. Adv. 2017, 3, eaao4862.

25

Ates, H. C.; Brunauer, A.; von Stetten, F.; Urban, G. A.; Güder, F.; Merkoçi, A.; Früh, S. M.; Dincer, C. Integrated devices for non-invasive diagnostics. Adv. Funct. Mater. 2021, 31, 2010388.

26

Li, C. W.; Wei, Y. L.; Zhang, S. T.; Tan, W. L. Advanced methods to analyze steroid estrogens in environmental samples. Environ. Chem. Lett. 2020, 18, 543–559.

27

Yu, X. T.; Zhang, X.; Xu, J. J.; Guo, P. Y.; Li, X. M.; Wang, H.; Xu, Z. L.; Lei, H. T.; Shen, X. Generation of recombinant antibodies by mammalian expression system for detecting S-metolachlor in environmental waters. J. Hazard. Mater. 2021, 418, 126305.

28

Ling, S. M.; Zhao, Q.; Iqbal, M. N.; Dong, M. K.; Li, X. L.; Lin, M.; Wang, R. Z.; Lei, F. Y.; He, C. Z.; Wang, S. H. Development of immunoassay methods based on monoclonal antibody and its application in the determination of cadmium ion. J. Hazard. Mater. 2021, 411, 124992.

29

Duan, J. L.; Zhan, J. H. Recent developments on nanomaterials-based optical sensors for Hg2+ detection. Sci. China Mater. 2015, 58, 223–240.

30

Huang, P.; Tu, D. T.; Zheng, W.; Zhou, S. Y.; Chen, Z.; Chen, X. Y. Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Sci. China Mater. 2015, 58, 156–177.

31

Yuan, M.; Na, Y.; Li, L. L.; Liu, B.; Sheng, W.; Lu, X. N.; Kennedy, I.; Crossan, A.; Wang, S. Computer-aided molecular modeling study on antibody recognition of small molecules: An immunoassay for triazine herbicides. J. Agric. Food. Chem. 2012, 60, 10486–10493.

32

Liu, C. M.; Dou, X. W.; Zhang, L.; Kong, W. J.; Wu, L.; Duan, Y. P.; Yang, M. H. Development of a broad-specificity antibody-based immunoassay for triazines in ginger and the quantitative structure–activity relationship study of cross-reactive molecules by molecular modeling. Anal. Chim. Acta 2018, 1012, 90–99.

33

Byzova, N. A.; Urusov, A. E.; Zherdev, A. V.; Dzantiev, B. B. Multiplex highly sensitive immunochromatographic assay based on the use of nonprocessed antisera. Anal. Bioanal. Chem. 2018, 410, 1903–1910.

34

Sheng, W.; Shi, Y. J.; Ma, J.; Wang, L. L.; Zhang, B.; Chang, Q.; Duan, W. X.; Wang, S. Highly sensitive atrazine fluorescence immunoassay by using magnetic separation and upconversion nanoparticles as labels. Microchim. Acta 2019, 186, 564.

35

Ruan, X. F.; Wang, Y. J.; Kwon, E. Y.; Wang, L. M.; Cheng, N.; Niu, X. H.; Ding, S. C.; Van Wie, B. J.; Lin, Y. H.; Du, D. Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosens. Bioelectron. 2021, 184, 113238.

36

Wang, Y. D.; Qin, J. A.; Wu, L.; Wang, B. M.; Eremin, S.; Yang, S. H.; Yang, M. H. Enzyme-linked immunosorbent assay and immunochromatographic strip for rapid detection of atrazine in three medicinal herbal roots. World J. Tradit. Chin. Med. 2021, 7, 97–103.

37

Liu, C. M.; Wang, Y. D.; Zhang, L.; Qin, J. A.; Dou, X. W.; Fu, Y. W.; Li, Q.; Zhao, X.; Yang, M. H. An integrated strategy for rapid on-site screening and determination of prometryn residues in herbs. Anal. Bioanal. Chem. 2020, 412, 621–633.

38

Usha, S. P.; Manoharan, H.; Deshmukh, R.; Álvarez-Diduk, R.; Calucho, E.; Sai, V. V. R.; Merkoçi, A. Attomolar analyte sensing techniques (AttoSens): A review on a decade of progress on chemical and biosensing nanoplatforms. Chem. Soc. Rev. 2021, 50, 13012–13089.

39

Liu, X. L.; Pan, Y. C.; Yang, J. J.; Gao, Y. F.; Huang, T.; Luan, X. W.; Wang, Y. Z.; Song, Y. J. Gold nanoparticles doped metal-organic frameworks as near-infrared light-enhanced cascade nanozyme against hypoxic tumors. Nano Res. 2020, 13, 653–660.

40

Bumbudsanpharoke, N.; Ko, S. Nanomaterial-based optical indicators: Promise, opportunities, and challenges in the development of colorimetric systems for intelligent packaging. Nano Res. 2019, 12, 489–500.

41

Liu, X. Y.; Wu, W. J.; Cui, D. X.; Chen, X. Y.; Li, W. W. Functional micro-/nanomaterials for multiplexed biodetection. Adv. Mater. 2021, 33, 2004734.

42

Tu, J. B.; Torrente-Rodríguez, R. M.; Wang, M. Q.; Gao, W. The era of digital health: A review of portable and wearable affinity biosensors. Adv. Funct. Mater. 2020, 30, 1906713.

43

Peng, J.; Liu, L. Q.; Xu, L. G.; Song, S. S.; Kuang, H.; Cui, G.; Xu, C. L. Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody. Nano Res. 2017, 10, 108–120.

44

Guo, L. L.; Wu, X. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Gold nanoparticle‐based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 2018, 14, 1701782.

45

Suryoprabowo, S.; Liu, L. Q.; Kuang, H.; Cui, G.; Xu, C. L. Gold immunochromatographic assay for simultaneous detection of sibutramine and sildenafil in slimming tea and coffee. Sci. China Mater. 2020, 63, 654–659.

46

Wang, Z. X.; Guo, L. L.; Liu, L. Q.; Kuang, H.; Xu, C. L. Colloidal gold-based immunochromatographic strip assay for the rapid detection of three natural estrogens in milk. Food Chem. 2018, 259, 122–129.

47

Chen, Y. N.; Liu, L. Q.; Xu, L. G.; Song, S. S.; Kuang, H.; Cui, G.; Xu, C. L. Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res. 2017, 10, 2833–2844.

48

Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 2006, 110, 15700–15707.

49

Omidfar, K.; Khorsand, F.; Azizi, M. D. New analytical applications of gold nanoparticles as label in antibody based sensors. Biosens. Bioelectron. 2013, 43, 336–347.

50

Khlebtsov, B. N.; Tumskiy, R. S.; Burov, A. M.; Pylaev, T. E.; Khlebtsov, N. G. Quantifying the numbers of gold nanoparticles in the test zone of lateral flow immunoassay strips. ACS Appl. Nano Mater. 2019, 2, 5020–5028.

51

Song, S. S.; Suryoprabowo, S.; Liu, L. Q.; Zheng, Q. K.; Wu, X. L.; Kuang, H. Development of an immunochromatographic strip test for rapid detection of sodium nifurstyrenate in fish. Food Agric. Immunol. 2019, 30, 236–247.

52

Ma, L.; Wang, S. J.; Xu, D. P.; Xie, M. M.; Ding, C. C.; Tian, Y. C.; Qiu, J. X.; Wang, X.; Dong, Q. L.; Liu, Q. Comparison between gold nanoparticles and FITC as the labelling in lateral flow immunoassays for rapid detection of Ralstonia solanacearum. Food Agric. Immunol. 2018, 29, 1074–1085.

File
12274_2022_4164_MOESM1_ESM.pdf (630.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 November 2021
Revised: 30 December 2021
Accepted: 17 January 2022
Published: 15 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R&D Program (No. 2019YFC1604703) and the Natural Science Foundation of Jiangsu Province (Nos. BK20200598, CMB21S1614, and CSE11N1310).

Return