Journal Home > Volume 15 , Issue 6

Fiber morphology with off-standing branches, as found in nature, e.g., in goose downy feather, provides exquisite functions that can be barely achieved by man-made fiber systems. In this work, we develop a simple and scalable method for generating downy feather-like para-aramid fibers and assemblies. Through treating commercial para-aramid microfibers with mild alkaline solution (low concentration of NaOH), a synergistic effect of chemical hydrolysis and physical shearing is successfully triggered to generate abundant nanofiber branches on the surface of para-aramid fibers. When compared with conventional monotonous structures, nonwovens composed of downy feather-like fibers exhibit a typical multiscale fiber morphology, larger specific surface area and smaller pore size, thus showing enhanced particles adsorption capacity (over twice of the pristine nonwoven), excellent oil absorption capacity (increased by ~ 50%), improved air filtration performances (doubled the filtration efficiency) and effective thermal insulation (thermal conductivity = 26.1 mW·m−1·K−1). More attractively, the intrinsic flame-retardant nature of para-aramid is well inherited by the downy feather-like fibers, and the fabrication process requires neither sophisticated equipment, nor tedious procedures, making us believe the strong competitiveness of these fibers and assemblies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Downy feather-like para-aramid fibers and nonwovens with enhanced absorbency, air filtration and thermal insulation performances

Show Author's information Kangli Xu1Jixia Deng1Guangliang Tian1Lei Zhan1Jiajia Ma1Lijun Wang2Qinfei Ke1( )Chen Huang1( )
Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
Changshu Weicheng Nonwoven Equipment Co., Ltd., Suzhou215539, China

Abstract

Fiber morphology with off-standing branches, as found in nature, e.g., in goose downy feather, provides exquisite functions that can be barely achieved by man-made fiber systems. In this work, we develop a simple and scalable method for generating downy feather-like para-aramid fibers and assemblies. Through treating commercial para-aramid microfibers with mild alkaline solution (low concentration of NaOH), a synergistic effect of chemical hydrolysis and physical shearing is successfully triggered to generate abundant nanofiber branches on the surface of para-aramid fibers. When compared with conventional monotonous structures, nonwovens composed of downy feather-like fibers exhibit a typical multiscale fiber morphology, larger specific surface area and smaller pore size, thus showing enhanced particles adsorption capacity (over twice of the pristine nonwoven), excellent oil absorption capacity (increased by ~ 50%), improved air filtration performances (doubled the filtration efficiency) and effective thermal insulation (thermal conductivity = 26.1 mW·m−1·K−1). More attractively, the intrinsic flame-retardant nature of para-aramid is well inherited by the downy feather-like fibers, and the fabrication process requires neither sophisticated equipment, nor tedious procedures, making us believe the strong competitiveness of these fibers and assemblies.

Keywords: air filtration, downy feather-like fibers, nanofibrils, para-aramid nonwoven, surface fibrillation, oil absorption

References(62)

1

Wu, Y. C; Shah, D. U.; Wang, B. Y.; Liu, J.; Ren, X. H.; Ramage, M. H.; Scherman, O. A. Biomimetic supramolecular fibers exhibit water-induced supercontraction. Adv. Mater. 2018, 30, 1707169.

2

Shi, G.; Zhang, X.; Li, J. H.; Zhu, H. Y.; Li, Y.; Zhang, L. P.; Ni, C. H.; Chi, L. F. Fabrication of 3D biomimetic composite coating with broadband antireflection, superhydrophilicity, and double p–n heterojunctions. Nano Res. 2017, 10, 2377–2385.

3
Teng Y. F. Kong X. Y. Liu P. Qian Y. C. Hu Y. H. Fu L. Xin W. W. Jiang L. Wen L. P. A universal functionalization strategy for biomimetic nanochannel via external electric field assisted non-covalent interaction Nano Res. 2020 14 1421 1428 10.1007/s12274-020-3192-z 

Teng, Y. F.; Kong, X. Y.; Liu, P.; Qian, Y. C.; Hu, Y. H.; Fu, L.; Xin, W. W.; Jiang, L.; Wen, L. P. A universal functionalization strategy for biomimetic nanochannel via external electric field assisted non-covalent interaction. Nano Res. 2020, 14, 1421–1428.

4

Buehler, E. L.; Su, I.; Buehler, M. J. WebNet: A biomateriomic three-dimensional spider web neural net. Extreme Mech. Lett. 2021, 42, 101034.

5

Liao, J. F.; Shi, K.; Jia, Y. P.; Wu, Y. T.; Qian, Z. Y. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioact. Mater. 2021, 6, 2221–2230.

6

Luan, K.; He, M. L.; Xu, B. J.; Wang, P. W.; Zhou, J. J.; Hu, B. B.; Jiang, L.; Liu, H. Spontaneous directional self-cleaning on the feathers of the aquatic bird Anser cygnoides domesticus induced by a transient superhydrophilicity. Adv. Funct. Mater. 2021, 31, 2010634.

7

Ma, C. Y.; Wang, H. T.; Chi, Y. J.; Wang, Y. L.; Jiang, L.; Xu, N.; Wu, Q.; Feng, Q. L.; Sun, X. D. Preparation of oriented collagen fiber scaffolds and its application in bone tissue engineering. Appl. Mater. Today 2021, 22, 100902.

8

Lee, J.; Yang, H. S.; Lee, N. S.; Kwon, O.; Shin, H. Y.; Yoon, S.; Baik, J. M.; Seo, Y. S.; Kim, M. H. Hierarchically assembled 1-dimensional hetero-nanostructures: Single crystalline RuO2 nanowires on electrospun IrO2 nanofibres. CrystEngComm 2013, 15, 2367–2371.

9

Burgard, M.; Weiss, D.; Kreger, K.; Schmalz, H.; Agarwal, S.; Schmidt, H. W.; Greiner, A. Mesostructured nonwovens with penguin downy feather-like morphology-top-down combined with bottom-up. Adv. Funct. Mater. 2019, 29, 1903166.

10

Luo, L. B.; Wu, P.; Cheng, Z.; Hong D. W.; Li, B. Y.; Wang, X.; Liu, X. Y. Direct fluorination of Para-aramid fibers 1: Fluorination reaction process of PPTA fiber. J. Fluorine Chem. 2016, 186, 12–18.

11

Lim, J.; Zheng, J. Q.; Masters, K.; Chen, W. W. Effects of gage length, loading rates, and damage on the strength of PPTA fibers. Inter. J. Impact Eng. 2011, 38, 219–227.

12

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Ding, X. Y. Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano 2019, 13, 7886–7897.

13

Lu, Z. Q.; Si, L. M.; Dang, W. B.; Zhao, Y. S. Transparent and mechanically robust poly (para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos. Part A -Appl. Sci. Manufactur. 2018, 115, 321–330.

14

Cao, K. Q.; Siepermann, C. P.; Yang, M.; Waas, A. M.; Kotov, N. A.; Thouless, M. D.; Arruda, E. M. Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 2013, 23, 2072–2080.

15

Sockalingam, S.; Bremble, R.; Gillespie, J. W.; Keefe, M. Transverse compression behavior of Kevlar KM2 single fiber. Compos. Part A -Appl. Sci. Manufactur. 2016, 81, 271–281.

16

Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954.

17

Yang, B.; Zhang, M. Y.; Lu, Z. Q.; Luo, J. J.; Song, S. X.; Zhang, Q. Y. From poly (p-phenylene terephthalamide) broken paper: High-performance aramid nanofibers and their application in electrical insulating nanomaterials with enhanced properties. ACS Sustainable Chem. Eng. 2018, 6, 8954–8963.

18

Wu, K.; Wang, X. Y.; Xu, Y. H.; Guo, W. H. Flame retardant efficiency of modified Para-aramid fiber synergizing with ammonium polyphosphate on PP/EPDM. Polym. Degred. Stabil. 2020, 172, 109065.

19

Chen, X. L.; Wang, W. D.; Jiao; C. M. A recycled environmental friendly flame retardant by modifying Para-aramid fiber with phosphorus acid for thermoplastic polyurethane elastomer. J. Hazard. Mater. 2017, 331, 257–264.

20

Ifuku, S.; Maeta, H.; Izawa, H.; Morimoto, M.; Saimoto, H. Facile preparation of aramid nanofibers from Twaron fibers by a downsizing process. RSC Adv. 2014, 4, 40377–40380.

21

Cheng, K.; Li, M. Z.; Zhang, S. H.; He, M.; Yu, J.; Feng, Y.; Lu, S. J. Study on the structure and properties of functionalized fibers with dopamine. Colloid Surf. A Physicochem. Eng. Aspects 2019, 582, 123846.

22

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

23

Chen, X.; Li, M. M.; Zhao X.; Dong, J.; Teng, C. Q. Preparation and microstructure control of aerogel fibers based on aramid nanofibers. J. Text. Res. 2021, 42, 17–23.

24

Dong, L. Y.; Zhu, Y. J.; Zhang, Q. Q.; Shao, Y. T. Fire-retardant and high‐temperature‐resistant label paper and its potential applications. Chemnanomat 2019, 5, 1418–1427.

25

Shah, S. A.; Kulhanek, D.; Sun, W. M.; Zhao, X. F.; Yu, S.; Parviz, D.; Lutkenhaus, J. L.; Green, M. J. Aramid nanofiber-reinforced three-dimensional graphene hydrogels for supercapacitor electrodes. J Colloid Interf. Sci. 2020, 560, 581–588.

26

Yang, B.; Zhang. M. Y.; Lu, Z. Q.; Luo, J. J.; Song, S. X.; Tan, J. J.; Zhang, Q. Y. Toward improved performances of para-aramid (PPTA) paper-based nanomaterials via aramid nanofibers (ANFs) and ANFs-film. Compos. Part B:Eng. 2018, 154, 166–174.

27

Shen, P. X.; Liao, J. B; Chen, Q.; Ruan, H. M.; Shen, J. N. Organic solvent resistant Kevlar nanofiber-based cation exchange membranes for electrodialysis applications. J. Memb. Sci. 2021, 630, 119300.

28

Xu, K. L.; Deng, J. X.; Lin, R.; Zhang, H.; Ke, Q. F.; Huang, C. Surface fibrillation of para-aramid nonwoven as a multi-functional air filter with ultralow pressure drop. J. Mater. Chem. A 2020, 8, 22269–22279.

29

Chen, X.; Xu, Y.; Zhang, W. X.; Xu, K. L.; Ke, Q. F.; Jin, X. Y.; Huang, C. Online fabrication of ultralight, three-dimensional, and structurally stable ultrafine fibre assemblies with a double-porous feature. Nanoscale 2019, 11, 8185–8195.

30

Zhang, H. N.; Zhu, L. L.; Xue, S. W.; Zhao, J.; Ren, H.; Zhai, H. M. Preparation of high oil absorption microfiber cryogels by mechanical method. Wood Sci. Technol. 2020, 54, 1363–1384.

31

Wu, Y.; Huang, J.; Chen, J. J.; Li, D.; Shi, X. W.; Du, Y. M.; Deng, H. B. Ordered hollow nanofiber aerogel with revivability for efficient oil absorption. J. Clean. Prod. 2021, 290, 125789.

32

Lin, G. Y.; Wang, H.; Yu, B. Q.; Qu, G. K.; Chen, S. W.; Kuang, T. R.; Yu, K. B.; Zhen, Liang, Z. N. Combined treatments of fiber surface etching/silane-coupling for enhanced mechanical strength of aramid fiber-reinforced rubber blends. Mater. Chem. Phys. 2020, 255, 123486.

33

E, S. F.; Ma, Q.; Ning, D. D.; Huang, J. Z.; Jin, Z. F.; Lu, Z. Q. Bio-inspired covalent crosslink of aramid nanofibers film for improved mechanical performances. Compos. Sci. Technol. 2021, 201, 108514.

34

Dong, L.; Shi, M.; Xu, S. J.; Sun, Q. L.; Pan, G. W.; Yao, L. R.; Zhu, C. H. Surface construction of fluorinated TiO2 nanotube networks to develop uvioresistant superhydrophobic aramid fabric. RSC Adv. 2020, 10, 22578–22585.

35

Gu, R. X.; Yu, J. R.; Hu, C. C.; Chen, L.; Zhu, J.; Hu, Z. M. Surface treatment of Para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure. Appl. Surf. Sci. 2012, 258, 10168–10174.

36

Zhang, X. K.; Li, N.; Hu, Z. M.; Yu, J. R.; Wang, Y.; Zhu, J. Poly(p-phenylene terephthalamide) modified PE separators for lithium ion batteries. J. Membrane Sci. 2019, 581, 355–361.

37

Fu, R.; Dong, C. C.; Zhang, Y.; Sun, C. M.; Qu, R. J.; Ji, C. N.; Zhang, Y. PPTA-oligomer functionalized multiwalled carbon nanotubes synthesized by “one-pot” method for reinforcement of polyvinyl chloride. J. Membrane Sci. 2019, 54, 11804–11817.

38

Davies, R. J.; Burghammer, M. Thermal- and stress-induced lattice distortions in a single Kevlar 49 fibre studied by microfocus X-ray diffraction. J. Membrane Sci. 2009, 44, 4806–4813.

39

Gonzalez, G. M.; Ward, J.; Song, J.; Swana, K.; Fossey, S. A.; Palmer, J. L.; Zhang, F. W.; Lucian, V. M.; Cera, L.; Zimmerman, J. F. et al. Para-aramid fiber sheets for simultaneous mechanical and thermal protection in extreme environments. Matter 2020, 3, 742–758.

40

Kosuge, K.; Takayasu, A.; Hori, T. Recyclable flame retardant nonwoven for sound absorption; RUBA®. J. Mater. Sci. 2005, 40, 5399–5405.

41

Hwang, H. S.; Malakooti, M. H.; Sodano, H. A. Tailored interyarn friction in aramid fabrics through morphology control of surface grown ZnO nanowires. Compos. Part A Appl. Sci. Manufactur. 2015, 76, 326–333.

42

Zhang, Z. L.; Zhao, Y.; Li, H. Q.; Percec, S.; Yin, J.; Ren, F. Nanoparticle-infused UHMWPE layer as multifunctional coating for high-performance PPTA single fibers. Sci. Rep. 2019, 9, 7183.

43

Cheon, J.; Lim, S. J.; Kim, M. A composite RAS with an enhanced uniformity of absorbing performance using a MWCNT-anchored aramid fiber. Compos. Sci. Technol. 2020, 200, 108442.

44

Zhang, H. R.; Zou, X. G.; Liang, J. J.; Ma, X.; Tang, Z. Y.; Sun, J. L. Development of electroless silver plating on Para-aramid fibers and growth morphology of silver deposits. J. Appl. Polym. Sci. 2012, 124, 3363–3371.

45

Xu, K. L.; Zhan, L.; Yan, R.; Ke, Q. F.; Yin, A. L.; Huang, C. Enhanced air filtration performances by coating aramid nanofibres on a melt-blown nonwoven. Nanoscale 2022, 14, 419–427.

46

Xiao, W. L.; Niu, B. H.; Yu, M.; Sun, C. D.; Wang, L. H.; Zhou, L.; Zheng, Y. A. Fabrication of foam-like oil sorbent from polylactic acid and Calotropis gigantea fiber for effective oil absorption. J. Clean. Prod. 2021, 278, 123507.

47

Yang, K.; Ren, J. Q.; Cui, Y. H.; Shah, T.; Zhang, Q. Y.; Zhang, B. L. Length controllable tubular carbon nanofibers: Surface adjustment and oil adsorption performances. Colloid Surf. A Physicochem. Eng. Aspects 2021, 615, 126272.

48

Panahi, S.; Moghaddam, M. K.; Moezzi, M. Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. J Environ. Manage. 2020, 268, 110688.

49

Zhou, X. Y.; Wang, F. F.; Ji, Y. L.; Chen, W. T.; Wei, J. F. Fabrication of hydrophilic and hydrophobic sites on polypropylene nonwoven for oil spill cleanup: Two dilemmas affecting oil sorption. Environ. Sci. Technol. 2016, 50, 3860–3865.

50

Dong, T.; Li, Q.; Nie, K.; Jiang, W.; Li, S. Z.; Hu, X. Y.; Han, G. T. Facile fabrication of marine algae-based robust superhydrophobic sponges for efficient oil removal from water. ACS Omega 2020, 5, 21745–21752.

51

Dalapati, R.; Nandi, S.; Gogoi, C.; Shome, A.; Biswas, S. Metal-organic framework (MOF) derived recyclable, superhydrophobic composite of cotton fabrics for the facile removal of oil spills. ACS Appl. Mater. Interfaces 2021, 13, 8563–8573.

52

Yeh, S. K.; Tsai, Y. B.; Gebremedhin, K. F.; Chien, T. Y.; Chang, R. Y.; Tung, K. L. Preparation of polypropylene/high-melt-strength PP open-cell foam for oil absorption. Polym. Eng. Sci. 2021, 61, 1139–1149.

53

Jadhav, A. C.; Jadhav, N. C. Graft copolymerization of methyl methacrylate on Meizotropis Pellita fibres and their applications in oil absorbency. Iran. Polym. J. 2021, 30, 9–24.

54

Souzandeh, H.; Johnson, K. S.; Wang, Y.; Bhamidipaty, K.; Zhong, W. H. Soy-protein-based nanofabrics for highly efficient and multifunctional air Filtration. ACS Appl. Mater. Interfaces 2016, 8, 20023–20031.

55

Liu, Z. W.; Lyu, J.; Fang, D.; Zhang, X. T. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 2019, 13, 5703–5711.

56

Xie, C. J.; Liu, S. Y.; Zhang, Q. G.; Ma, H. X.; Yang, S. X.; Guo, Z. X.; Qiu, T.; Tuo, X. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 2021, 15, 10000–10009.

57

Apostolopoulou-Kalkavoura, V.; Munier, P.; Bergström, L. Thermally insulating nanocellulose-based materials. Adv Mater. 2020, 33, 2001839.

58

Xu, D. F. Modification of aramid fiber with phosphorus acid and its effect on flammability and smoke suppression for rigid polyurethane foams. J. Text. Res. 2020, 41, 30–37.

59

Wu, H. Y.; Li, Y. Y.; Zhao, L.; Wang, S.; Tian, Y. C.; Si, Y.; Yu, J. Y.; Ding, B. Stretchable and superelastic fibrous sponges tailored by "Stiff-Soft" bicomponent electrospun fibers for warmth retention. ACS Appl. Mater. Interfaces 2020, 12, 27562–27571.

60

Zhao, S. Y.; Malfait, W. J.; Guerrero-Alburquerque, N.; Koebel, M. M.; Nyström, G. Biopolymer aerogels and foams: Chemistry, properties, and applications. Angew Chem., Int. Ed. 2018, 57, 7580–7608.

61

Jiang, S.; Zhang, M. L.; Jiang, W.; Xu, Q. Y.; Yu, J. Y.; Liu, L. Y.; Liu, L. F. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties. Carbohydr. Polym. 2020, 247, 116701.

62

Shao, Z. Y.; Wang, Y. J.; Bai, H. A superhydrophobic textile inspired by polar bear hair for both in air and underwater thermal insulation. Chem. Eng. J. 2020, 397, 125441.

Video
12274_4155_ESM1.mp4
12274_4155_ESM2.mp4
12274_4155_ESM3.mp4
File
12274_2022_4155_MOESM4_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 November 2021
Revised: 23 December 2021
Accepted: 12 January 2022
Published: 29 March 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (No. CUSF-DH-D-2020021).

Return