Journal Home > Volume 15 , Issue 6

Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility, durability of deformation, and good electrical conductivity. However, in real applications, severe environments occur frequently, such as extremely cold weather. General hydrogels always lack anti-freeze and anti-dehydration abilities. Consequently, the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments. Therefore, the development of environmentally robust hydrogels that can withstand extremely low temperatures, overcome dehydration, and ensure the stable operation of electronic devices has become increasingly important. Here, we report a kind of graphene oxide (GO) incorporated polyvinyl alcohol-polyacrylamide (PVA-PAAm) double network hydrogel (GPPD-hydrogel) which shows excellent anti-freeze ability. The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%, but ensures a high sensitivity when used as the strain sensor at −50 °C. More importantly, when serving as the electrode of a sandwich-structural triboelectric nanogenerator (TENG), the GPPD-hydrogel endows the TENG high and stable output performances even under −80 °C. Besides, the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days. The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator

Show Author's information Xinhuan Dai1,2,§Yong Long1,2,§Bing Jiang1,3Wenbin Guo1,2Wei Sha1,2Jiangwen Wang1,2Zifeng Cong1,2Jiwei Chen1,3Bingjun Wang1,3Weiguo Hu1,2,3( )
Chinese Academy of Sciences Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

§ Xinhuan Dai and Yong Long contributed equally to this work.

Abstract

Conductive hydrogels have become one of the most promising candidates for flexible electronics due to their excellent mechanical flexibility, durability of deformation, and good electrical conductivity. However, in real applications, severe environments occur frequently, such as extremely cold weather. General hydrogels always lack anti-freeze and anti-dehydration abilities. Consequently, the functions of electronic devices based on traditional hydrogels will quickly fail in extreme environments. Therefore, the development of environmentally robust hydrogels that can withstand extremely low temperatures, overcome dehydration, and ensure the stable operation of electronic devices has become increasingly important. Here, we report a kind of graphene oxide (GO) incorporated polyvinyl alcohol-polyacrylamide (PVA-PAAm) double network hydrogel (GPPD-hydrogel) which shows excellent anti-freeze ability. The GPPD-hydrogel exhibits not only good flexibility and ultra-high stretchability up to 2,000%, but ensures a high sensitivity when used as the strain sensor at −50 °C. More importantly, when serving as the electrode of a sandwich-structural triboelectric nanogenerator (TENG), the GPPD-hydrogel endows the TENG high and stable output performances even under −80 °C. Besides, the GPPD-hydrogel is demonstrated long-lasting moisture retention over 100 days. The GPPD-hydrogel provides a reliable and promising candidate for the new generation of wearable electronics.

Keywords: triboelectric nanogenerators, strain sensors, antifreeze, ultra-stretchable hydrogels, multi-functional flexible electronics

References(53)

1

An, B. W.; Heo, S.; Ji, S.; Bien, F.; Park, J. U. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 2018, 9, 2458.

2

Li, Y.; Ling, W.; Liu, X. Y.; Shang, X.; Zhou, P.; Chen, Z. R.; Xu, H.; Huang, X. Metal–organic frameworks as functional materials for implantable flexible biochemical sensors. Nano Res. 2021, 14, 2981–3009.

3

Ge, J.; Wang, X.; Drack, M.; Volkov, O.; Liang, M.; Bermúdez, G. S. C.; Illing, R.; Wang, C. A.; Zhou, S. Q.; Fassbender, J. et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat. Commun. 2019, 10, 4405.

4

Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

5

Zhu, H. W.; Gao, H. L.; Zhao, H. Y.; Ge, J.; Hu, B. C.; Huang, J.; Yu, S. H. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 2020, 13, 2879–2884.

6

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

7

Wang, S.; Gao, Y.; Wei, A. R.; Xiao, P.; Liang, Y.; Lu, W.; Chen, C.; Zhang, C.; Yang, G. L.; Yao, H. M. et al. Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics. Nat. Commun. 2020, 11, 4359.

8

Yang, H. T.; Yeow, B. S.; Chang, T. H.; Li, K. R.; Fu, F. F.; Ren, H. L.; Chen, P. Y. Graphene oxide-enabled synthesis of metal oxide origamis for soft robotics. ACS Nano 2019, 13, 5410–5420.

9

Luo, J. J.; Wang, Z. M.; Xu, L.; Wang, A. C.; Han, K.; Jiang, T.; Lai, Q. S.; Bai, Y.; Tang, W.; Fan, F. R. et al. Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 2019, 10, 5147.

10

Li, G. Z.; Wang, G. G.; Cai, Y. W.; Sun, N.; Li, F.; Zhou, H. L.; Zhao, H. X.; Zhang, X. N.; Han, J. C.; Yang, Y. A high-performance transparent and flexible triboelectric nanogenerator based on hydrophobic composite films. Nano Energy 2020, 75, 104918.

11

Zhou, C. J.; Yang, Y. Q.; Sun, N.; Wen, Z.; Cheng, P.; Xie, X. K.; Shao, H. Y.; Shen, Q. Q.; Chen, X. P.; Liu, Y. N. et al. Flexible self-charging power units for portable electronics based on folded carbon paper. Nano Res. 2018, 11, 4313–4322.

12

Jian, Y. K.; Handschuh-Wang, S.; Zhang, J. W.; Lu, W.; Zhou, X. C.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: Keeping soft-wet materials active in cold environments. Mater. Horiz. 2021, 8, 351–369.

13

Ding, Y.; Zhang, J. J.; Chang, L.; Zhang, X. Q.; Liu, H. L.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253.

14

Yu, H. P.; Zhu, Y. J. Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure. Nano Res. 2021, 14, 3643–3652.

15

Li, T. Q.; Wang, Y. T.; Li, S. H.; Liu, X. K.; Sun, J. Q. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv. Mater. 2020, 32, 2002706.

16

Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.

17

Sun, L. J.; Chen, S.; Guo, Y. F.; Song, J. C.; Zhang, L. Z.; Xiao, L. J.; Guan, Q. B.; You, Z. W. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 2019, 63, 103847.

18

Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

19

Liu, T.; Liu, M. M.; Dou, S.; Sun, J. M.; Cong, Z. F.; Jiang, C. Y.; Du, C. H.; Pu, X.; Hu, W. G.; Wang, Z. L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 2018, 12, 2818–2826.

20

Sui, X.; Guo, H. S.; Cai, C. C.; Li, Q. S.; Wen, C. Y.; Zhang, X. Y.; Wang, X. D.; Yang, J.; Zhang, L. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem. —Eng. J. 2021, 419, 129478.

21

Liu, H. Y.; Wang, X.; Cao, Y. X.; Yang, Y. Y.; Yang, Y. T.; Gao, Y. F.; Ma, Z. S.; Wang, J. F.; Wang, W. J.; Wu, D. C. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl. Mater. Interfaces 2020, 12, 25334–25344.

22

Rong, Q. F.; Lei, W. W.; Chen, L.; Yin, Y. A.; Zhou, J. J.; Liu, M. J. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem., Int. Ed. 2017, 56, 14159–14163.

23

Rong, Q. F.; Lei, W. W.; Huang, J.; Liu, M. J. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 2018, 8, 1801967.

24

Zhao, X.; Chen, F.; Li, Y. H.; Lu, H.; Zhang, N.; Ma, M. M. Bioinspired ultra-stretchable and anti-freezing conductive hydrogel fibers with ordered and reversible polymer chain alignment. Nat. Commun. 2018, 9, 3579.

25

Chen, M. F.; Zhou, W. J.; Wang, A.; Huang, A. X.; Chen, J. Z.; Xu, J. L.; Wong, C. P. Anti-freezing flexible aqueous Zn-MnO2 batteries working at −35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 2020, 8, 6828–6841.

26

Mo, F. N.; Liang, G. J.; Meng, Q. Q.; Liu, Z. X.; Li, H. F.; Fan, J.; Zhi, C. Y. A flexible rechargeable aqueous zinc manganese-dioxide battery working at −20 °C. Energy Environ. Sci. 2019, 12, 706–715.

27

Guan, L.; Yan, S.; Liu, X.; Li, X. Y.; Gao, G. H. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion. J. Mater. Chem. B 2019, 7, 5230–5236.

28

Li, S. H.; Pan, H. Y.; Wang, Y. T.; Sun, J. Q. Polyelectrolyte complex-based self-healing, fatigue-resistant and anti-freezing hydrogels as highly sensitive ionic skins. J. Mater. Chem. A 2020, 8, 3667–3675.

29

Liao, H.; Guo, X. L.; Wan, P. B.; Yu, G. H. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 2019, 29, 1904507.

30

Su, X.; Wang, H.; Tian, Z. L.; Duan, X. C.; Chai, Z. H.; Feng, Y. T.; Wang, Y. X.; Fan, Y.; Huang, J. Y. A solvent co-cross-linked organogel with fast self-healing capability and reversible adhesiveness at extreme temperatures. ACS Appl. Mater. Interfaces 2020, 12, 29757–29766.

31

Ye, Y. H.; Zhang, Y. F.; Chen, Y.; Han, X. S.; Jiang, F. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 2020, 30, 2003430.

32

Lou, D. Y.; Wang, C. S.; He, Z. Y.; Sun, X. Y.; Luo, J. S.; Li, J. Robust organohydrogel with flexibility and conductivity across the freezing and boiling temperatures of water. Chem. Commun. 2019, 55, 8422–8425.

33

Yue, H. R.; Zhao, Y. J.; Ma, X. B.; Gong, J. L. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218–4244.

34

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

35

Gan, D. L.; Huang, Z. Q.; Wang, X.; Jiang, L. L.; Wang, C. M.; Zhu, M. Y.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Xie, C. M. et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv. Funct. Mater. 2020, 30, 1907678.

36

Peralta Ramos, M. L.; Galaburri, G.; González, J. A.; Pérez, C. J.; Villanueva, M. E.; Copello, G. J. Influence of GO reinforcement on keratin based smart hydrogel and its application for emerging pollutants removal. J. Environ. Chem. Eng. 2018, 6, 7021–7028.

37

Wu, X. F.; Xie, Y. Y.; Xue, C.; Chen, K.; Yang, X. H.; Xu, L. M.; Qi, J. W.; Zhang, D. K. Preparation of PVA-GO composite hydrogel and effect of ionic coordination on its properties. Mater. Res. Express. 2019, 6, 075306.

38

Xiang, X.; Li, H. L.; Zhu, Y.; Xia, S.; He, Q. The composite hydrogel with “2D flexible crosslinking point” of reduced graphene oxide for strain sensor. J. Appl. Polym. Sci. 2021, 138, 50801.

39

Zhang, L.; Wang, Z. P.; Xu, C.; Li, Y.; Gao, J. P.; Wang, W.; Liu, Y. High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 2011, 21, 10399–10406.

40

Li, Z.; Su, Y. L.; Xie, B. Q.; Liu, X. G.; Gao, X.; Wang, D. J. A novel biocompatible double network hydrogel consisting of konjac glucomannan with high mechanical strength and ability to be freely shaped. J. Mater. Chem. B 2015, 3, 1769–1778.

41

Kumar, R. M.; Baskar, P.; Balamurugan, K.; Das, S.; Subramanian, V. On the perturbation of the H-bonding interaction in ethylene glycol clusters upon hydration. J. Phys. Chem. A 2012, 116, 4239–4247.

42

Naranjo, A.; Martín, C.; López-Díaz, A.; Martín-Pacheco, A.; Rodriguez, A. M.; Patiño, F. J.; Herrero, M. A.; Vázquez, A.; Vázquez, E. Autonomous self-healing hydrogel with anti-drying properties and applications in soft robotics. Appl. Mater. Today 2020, 21, 100806.

43

Ge, G.; Yuan, W.; Zhao, W.; Lu, Y.; Zhang, Y. Z.; Wang, W. J.; Chen, P.; Huang, W.; Si, W. L.; Dong, X. C. Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. J. Mater. Chem. A 2019, 7, 5949–5956.

44

He, P.; Wu, J. Y.; Pan, X. F.; Chen, L. H.; Liu, K.; Gao, H. L.; Wu, H.; Cao, S. L.; Huang, L. L. et al. Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications. J. Mater. Chem. A 2020, 8, 3109–3118.

45

Wang, Z. L. On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy 2020, 68, 104272.

46

Wu, J. M.; Lee, C. C.; Lin, Y. H. High sensitivity wrist-worn pulse active sensor made from tellurium dioxide microwires. Nano Energy 2015, 14, 102–110.

47

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

48

Lai, S. N.; Chang, C. K.; Yang, C. S.; Su, C. W.; Leu, C. M.; Chu, Y. H.; Sha, P. W.; Wu, J. M. Ultrasensitivity of self-powered wireless triboelectric vibration sensor for operating in underwater environment based on surface functionalization of rice husks. Nano Energy 2019, 60, 715–723.

49

Bao, D. Q.; Wen, Z.; Shi, J. H.; Xie, L. J.; Jiang, H. X.; Jiang, J. X.; Yang, Y. Q.; Liao, W. Q.; Sun, X. H. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 2020, 8, 13787–13794.

50

Sun, H. L.; Zhao, Y.; Jiao, S. L.; Wang, C. F.; Jia, Y. P.; Dai, K.; Zheng, G. Q.; Liu, C. T.; Wan, P. B.; Shen, C. Y. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 2021, 31, 2101696.

51

Huang, L. B.; Dai, X. Y.; Sun, Z. H.; Wong, M. C.; Pang, S. Y.; Han, J. C.; Zheng, Q. Q.; Zhao, C. H.; Kong, J.; Hao, J. H. Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 2021, 82, 105724.

52

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

53

Rasel, M. S.; Maharjan, P.; Salauddin, M.; Rahman, M. T.; Cho, H. O.; Kim, J. W.; Park, J. Y. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018, 49, 603–613.

Video
12274_2022_4153_MOESM2_ESM.mp4
File
12274_2022_4153_MOESM1_ESM.pdf (755 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 October 2021
Revised: 17 December 2021
Accepted: 12 January 2022
Published: 27 February 2022
Issue date: April 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

The authors thank for the support from the National Natural Science Foundation of China (Nos. 22001018, 52192610, 52173298, and 61904012), and the National Key R&D Program of China (No. 2021YFA1201603).

Return