Journal Home > Volume 15 , Issue 6

Artificial synaptic devices with the functions of emulating important biological synaptic behaviors are playing an increasingly important role in the development of neuromorphic computing systems. Single-walled carbon nanotubes (SWCNTs) with excellent electrical properties and high stability have been studied as active materials for synaptic devices. However, the performance of optical synaptic devices (OSDs) based on pure SWCNTs is limited by the weak light absorption property. Herein, bismuth triiodide (BiI3), an environmentally stable and friendly optoelectronic material, is firstly combined with SWCNTs to fabricate OSDs with decent properties of perceiving and memorizing optical information. The OSDs can exhibit typical synaptic behaviors including excitatory postsynaptic current, paired-pulse facilitation, and short/long-term memory. Distinctively, the photo-response of the OSD is independent of pulse light wavelength in the range of 365 to 650 nm, different from most of the previously reported OSDs, which usually have wavelength-dependent photo-response. Temperature- dependent photo-response behaviors of the devices are investigated. Importantly, the OSD without encapsulation holds good excitatory post-synaptic current (EPSC) behavior after being stored in the ambient environment for 170 days, indicating reliable environmental stability. Furthermore, an OSD array with nine synaptic devices is employed to mimic the human visual perception and memory functions. These results suggest the feasibility of BiI3/SWCNTs-based OSDs for the simulation of human visual memory.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Air-stable synaptic devices based on bismuth triiodide and carbon nanotubes

Show Author's information Dandan Hao1Junyao Zhang1Li Li1Ben Yang1Pu Guo1Shiqi Zhang1Jia Huang2,1( )
Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Frontiers Science Center for Intelligent Autonomous Systems, Tongji University, Shanghai 201804, China
Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital Affiliated to Tongji University, School of Materials Science and Engineering, Tongji University, Shanghai 200434, China

Abstract

Artificial synaptic devices with the functions of emulating important biological synaptic behaviors are playing an increasingly important role in the development of neuromorphic computing systems. Single-walled carbon nanotubes (SWCNTs) with excellent electrical properties and high stability have been studied as active materials for synaptic devices. However, the performance of optical synaptic devices (OSDs) based on pure SWCNTs is limited by the weak light absorption property. Herein, bismuth triiodide (BiI3), an environmentally stable and friendly optoelectronic material, is firstly combined with SWCNTs to fabricate OSDs with decent properties of perceiving and memorizing optical information. The OSDs can exhibit typical synaptic behaviors including excitatory postsynaptic current, paired-pulse facilitation, and short/long-term memory. Distinctively, the photo-response of the OSD is independent of pulse light wavelength in the range of 365 to 650 nm, different from most of the previously reported OSDs, which usually have wavelength-dependent photo-response. Temperature- dependent photo-response behaviors of the devices are investigated. Importantly, the OSD without encapsulation holds good excitatory post-synaptic current (EPSC) behavior after being stored in the ambient environment for 170 days, indicating reliable environmental stability. Furthermore, an OSD array with nine synaptic devices is employed to mimic the human visual perception and memory functions. These results suggest the feasibility of BiI3/SWCNTs-based OSDs for the simulation of human visual memory.

Keywords: stability, semiconducting single-walled carbon nanotubes, bismuth triiodide, optical synaptic devices, human visual memory

References(60)

1

Guo, J. M.; Liu, Y. H.; Zhou, F. C.; Li, F. Z.; Li, Y. T.; Huang, F. Linear classification function emulated by pectin-based polysaccharide-gated multiterminal neuron transistors. Adv. Funct. Mater. 2021, 31, 2102015.

2

Zhang, J. Y.; Shi, Q. Q.; Wang, R. Z.; Zhang, X.; Li, L.; Zhang, J. H.; Tian, L.; Xiong, L. Z.; Huang, J. Spectrum-dependent photonic synapses based on 2D imine polymers for power-efficient neuromorphic computing. InfoMat 2021, 3, 904–916.

3

Du, C. Y.; Ren, Y. Y.; Qu, Z. Y.; Gao, L. L.; Zhai, Y. B.; Han, S. T.; Zhou, Y. Synaptic transistors and neuromorphic systems based on carbon nano-materials. Nanoscale 2021, 13, 7498–7522.

4

Li, J. X.; Dwivedi, P.; Kumar, K. S.; Roy, T.; Crawford, K. E.; Thomas, J. Growing perovskite quantum dots on carbon nanotubes for neuromorphic optoelectronic computing. Adv. Electron. Mater. 2021, 7, 2000535.

5

Chen, Y.; Qiu, W. J.; Wang, X. W.; Liu, W. R.; Wang, J. X.; Dai, G. Z.; Yuan, Y. B.; Gao, Y. L.; Sun, J. Solar-blind SnO2 nanowire photo-synapses for associative learning and coincidence detection. Nano Energy 2019, 62, 393–400.

6

Yang, J. T.; Ge, C.; Du, J. Y.; Huang, H. Y.; He, M.; Wang, C.; Lu, H. B.; Yang, G. Z.; Jin, K. J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548.

7

Yan, X. B.; Zhao, Q. L.; Chen, A. P.; Zhao, J. H.; Zhou, Z. Y.; Wang, J. J.; Wang, H.; Zhang, L.; Li, X. Y.; Xiao, Z. A. et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423.

8

Wang, W. X.; Gao, S.; Li, Y.; Yue, W. J.; Kan, H.; Zhang, C. W.; Lou, Z.; Wang, L. L.; Shen, G. Z. Artificial optoelectronic synapses based on TiNxO2−x/MoS2 heterojunction for neuromorphic computing and visual system. Adv. Funct. Mater. 2021, 31, 2101201.

9

Yao, Y.; Huang, X. N.; Peng, S. A.; Zhang, D. Y.; Shi, J. Y.; Yu, G. H.; Liu, Q.; Jin, Z. Reconfigurable artificial synapses between excitatory and inhibitory modes based on single-gate graphene transistors. Adv. Electron. Mater. 2019, 5, 1800887.

10

Choi, Y.; Kim, J. H.; Qian, C.; Kang, J.; Hersam, M. C.; Park, J. H.; Cho, J. H. Gate-tunable synaptic dynamics of ferroelectric-coupled carbon-nanotube transistors. ACS Appl. Mater. Interfaces 2020, 12, 4707–4714.

11

Shao, L.; Wang, H. L.; Yang, Y.; He, Y. L.; Tang, Y. C.; Fang, H. H.; Zhao, J. W.; Xiao, H. S.; Liang, K.; Wei, M. et al. Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices. ACS Appl. Mater. Interfaces 2019, 11, 12161–12169.

12

Wan, H. C.; Cao, Y. Q.; Lo, L. W.; Zhao, J. Y.; Sepúlveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano 2020, 14, 10402–10412.

13

Lu, Q. F.; Sun, F. Q.; Liu, L.; Li, L. H.; Hao, M. M.; Wang, Z. H.; Zhang, T. Bio-inspired flexible artificial synapses for pain perception and nerve injuries. npj Flex. Electron. 2020, 4, 3.

14

Agnus, G.; Zhao, W. S.; Derycke, V.; Filoramo, A.; Lhuillier, Y.; Lenfant, S.; Vuillaume, D.; Gamrat, C.; Bourgoin, J. P. Two-terminal carbon nanotube programmable devices for adaptive architectures. Adv. Mater. 2010, 22, 702–706.

15

Liu, Z.; Dai, S. L.; Wang, Y.; Yang, B.; Hao, D. D.; Liu, D. P.; Zhao, Y. W.; Fang, L.; Ou, Q. Q.; Jin, S. et al. Photoresponsive transistors based on lead-free perovskite and carbon nanotubes. Adv. Funct. Mater. 2020, 30, 1906335.

16

Li, M.; Xiong, Z. Y.; Shao, S. S.; Shao, L.; Han, S. T.; Wang, H.; Zhao, J. W. Multimodal optoelectronic neuromorphic electronics based on lead-free perovskite-mixed carbon nanotubes. Carbon 2021, 176, 592–601.

17

Hao, J.; Kim, Y. H.; Habisreutinger, S. N.; Harvey, S. P.; Miller, E. M.; Foradori, S. M.; Arnold, M. S.; Song, Z. N.; Yan, Y. F.; Luther, J. M. et al. Low-energy room-temperature optical switching in mixed-dimensionality nanoscale perovskite heterojunctions. Sci. Adv. 2021, 7, eabf1959.

18

Qu, N. N.; Lei, Y.; Yang, X. G.; Hu, X. J.; Zhao, W. C.; Zhao, C. L.; Zheng, Z. From BiI3 to CuBiI4: A striking improvement in the photoelectric performance of a novel photodetector candidate. J. Mater. Chem. C 2020, 8, 8451–8456.

19

Wang, Y. X.; Shi, X. N.; Wang, G.; Tong, J. Y.; Pan, D. C. All-inorganic and lead-free BiI3 thin film solar cells by iodization of BiSI thin films. J. Mater. Chem. C 2020, 8, 14066–14074.

20

Chang, P. H.; Li, C. S.; Fu, F. Y.; Huang, K. Y.; Chou, A. S.; Wu, C. I. Ultrasensitive photoresponsive devices based on graphene/BiI3 van der Waals epitaxial heterostructures. Adv. Funct. Mater. 2018, 28, 1800179.

21

Hamdeh, U. H.; Nelson, R. D.; Ryan, B. J.; Bhattacharjee, U.; Petrich, J. W.; Panthani, M. G. Solution-processed BiI3 thin films for photovoltaic applications: Improved carrier collection via solvent annealing. Chem. Mater. 2016, 28, 6567–6574.

22

Kang, J.; Chen, S.; Zhao, X. L.; Yin, H. J.; Zhang, W. P.; Al-Mamun, M.; Liu, P.; Wang, Y.; Zhao, H. J. An inverted BiI3/PCBM binary quasi-bulk heterojunction solar cell with a power conversion efficiency of 1.50%. Nano Energy 2020, 73, 104799.

23

Wei, Q.; Chen, J. H.; Ding, P.; Shen, B.; Yin, J.; Xu, F.; Xia, Y. D.; Liu, Z. G. Synthesis of easily transferred 2D layered BiI3 nanoplates for flexible visible-light photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 21527–21533.

24

Wei, Q.; Wang, Y. R.; Yin, J.; Xia, Y. D.; Liu, Z. G. High-performance visible-light photodetectors built on 2D-nanoplate-assembled large-scale BiI3 films. Adv. Electron. Mater. 2019, 5, 1900159.

25

Sun, H.; Yang, D. Y.; Liu, Y. Z.; Zhu, X. H. Highly flexible X-ray detectors based on pure inorganic metal iodide polycrystalline thin films as photon-to-charge conversion layers. ACS Appl. Electron. Mater. 2019, 1, 2637–2645.

26

Tiong, V. T.; Pham, N. D.; Wang, T.; Zhu, T. X.; Zhao, X. L.; Zhang, Y. H.; Shen, Q.; Bell, J.; Hu, L. H.; Dai, S. Y. et al. Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv. Funct. Mater. 2018, 28, 1705545.

27

Ma, S.; Yang, Y.; Liu, C.; Cai, M. L.; Ding, Y.; Tan, Z.; Shi, P. J.; Dai, S. Y.; Alsaedi, A.; Hayat, T. Vertically oriented BiI3 template featured BiI3/polymer heterojunction for high photocurrent and long-term stable solar cells. ACS Appl. Mater. Interfaces 2019, 11, 32509–32516.

28

Brandt, R. E.; Kurchin, R. C.; Hoye, R. L. Z.; Poindexter, J. R.; Wilson, M. W. B.; Sulekar, S.; Lenahan, F.; Yen, P. X. T.; Stevanović, V.; Nino, J. C. et al. Investigation of bismuth triiodide (BiI3) for photovoltaic applications. J. Phys. Chem. Lett. 2015, 6, 4297–4302.

29

Tiwari, D.; Alibhai, D.; Fermin, D. J. Above 600 mV open-circuit voltage BiI3 solar cells. ACS Energy Lett. 2018, 3, 1882–1886.

30

Hao, D. D.; Liu, D. P.; Shen, Y. K.; Shi, Q. Q.; Huang, J. Air-stable self-powered photodetectors based on lead-free CsBi3I10/SnO2 heterojunction for weak light detection. Adv. Funct. Mater. 2021, 31, 2100773.

31

Zhu, Q. B.; Li, B.; Yang, D. D.; Liu, C.; Feng, S.; Chen, M. L.; Sun, Y.; Tian, Y. N.; Su, X.; Wang, X. M. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 2021, 12, 1798.

32

Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

33

Wang, Y. S.; Zhang, Y. P.; Lu, Y.; Xu, W. D.; Mu, H. R.; Chen, C. Y.; Qiao, H.; Song, J. C.; Li, S. J.; Sun, B. Q. et al. Hybrid graphene-perovskite phototransistors with ultrahigh responsivity and gain. Adv. Opt. Mater. 2015, 3, 1389–1396.

34

Xie, C.; Yan, F. Enhanced performance of perovskite/organic-semiconductor hybrid heterojunction photodetectors with the electron trapping effects. J. Mater. Chem. C 2018, 6, 1338–1342.

35

Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391–400.

36

Xu, X. Z.; Deng, W.; Zhang, X. J.; Huang, L. M.; Wang, W.; Jia, R. F.; Wu, D.; Zhang, X. H.; Jie, J. S.; Lee, S. T. Dual-band, high-performance phototransistors from hybrid perovskite and organic crystal array for secure communication applications. ACS Nano 2019, 13, 5910–5919.

37

Hao, D. D.; Liu, D. P.; Zhang, J. Y.; Wang, Y.; Huang, J. Lead-free perovskites-based photonic synaptic devices with logic functions. Adv. Mater. Technol. 2021, 6, 2100678.

38

Xie, C.; Liu, C. K.; Loi, H. L.; Yan, F. Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater. 2020, 30, 1903907.

39

Hao, D. D.; Zhang, J. Y.; Dai, S. L.; Zhang, J. H.; Huang, J. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces 2020, 12, 39487–39495.

40

Kim, W.; Javey, A.; Vermesh, O.; Wang, O.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193–198.

41

Qian, Q. K.; Li, G. H.; Jin, Y. H.; Liu, J. K.; Zou, Y.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Trap-state-dominated suppression of electron conduction in carbon nanotube thin-film transistors. ACS Nano 2014, 8, 9597–9605.

42

Zhao, J.; Liu, F.; Huang, Q.; Lu, T. K.; Xi, M. Q.; Peng, L. M.; Liang, X. L. Charge trap-based carbon nanotube transistor for synaptic function mimicking. Nano Res. 2021, 14, 4258–4263.

43

Abbott, L. F.; Regehr, W. G. Synaptic computation. Nature 2004, 431, 796–803.

44

Yang, Y.; Lisberger, S. G. Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature 2014, 510, 529–532.

45

Wang, Y.; Lv, Z. Y.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.

46

Yin, L.; Huang, W.; Xiao, R. L.; Peng, W. B.; Zhu, Y. Y.; Zhang, Y. Q.; Pi, X. D.; Yang, D. R. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett. 2020, 20, 3378–3387.

47

Zhang, C.; Wang, S. Y.; Zhao, X. L.; Yang, Y. H.; Tong, Y. H.; Zhang, M. X.; Tang, Q. X.; Liu, Y. C. Sub-femtojoule-energy-consumption conformable synaptic transistors based on organic single-crystalline nanoribbons. Adv. Funct. Mater. 2021, 31, 2007894.

48

Xu, W. T.; Min, S. Y.; Hwang, H.; Lee, T. W. Organic core–sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2016, 2, e1501326.

49

Liu, Y. X.;Wei, Y. N.;Liu, M. H.;Bai, Y. C.;Liu, G. C.;Wang, X. Y.;Shang, S. C.;Gao, W. Q.;Du, C. S.;Chen, J. Y.; Liu, Y. Q. Two-dimensional metal-organic framework film for realizing optoelectronic synaptic plasticity. Angew. Chem., Int. Ed. 2021, 60, 1–7.

50

Deng, W.; Zhang, X. J.; Jia, R. F.; Huang, L. M.; Zhang, X. H.; Jie, J. S. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Mater. 2019, 11, 77.

51

Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

52

Dai, S. L.; Wu, X. H.; Liu, D. P.; Chu, Y. L.; Wang, K.; Yang, B.; Huang, J. Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 21472–21480.

53

Jia, R. F.; Wu, X. F.; Deng, W.; Zhang, X. J.; Huang, L. M.; Niu, K. F.; Chi, L. F.; Jie, J. S. Unraveling the mechanism of the persistent photoconductivity in organic phototransistors. Adv. Funct. Mater. 2019, 29, 1905657.

54

Ji, Y. H.; Gao, Q.; Huang, A. P.; Yang, M. Q.; Liu, Y. Q.; Geng, X. L.; Zhang, J. J.; Wang, R. Z.; Wang, M.; Xiao, Z. S. et al. GaOx@GaN nanowire arrays on flexible graphite paper with tunable persistent photoconductivity. ACS Appl. Mater. Interfaces 2021, 13, 41916–41925.

55

Jiang, J.; Ling, C. Y.; Xu, T.; Wang, W. H.; Niu, X. H.; Zafar, A.; Yan, Z. Z.; Wang, X. M.; You, Y. M.; Sun, L. T. et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.

56

Ham, S.; Kang, M. J.; Jang, S.; Jang, J.; Choi, S.; Kim, T. W.; Wang, G. One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci. Adv. 2020, 6, eaba1178.

57

Wang, R. Z.; Chen, P. Y.; Hao, D. D.; Zhang, J. Y.; Shi, Q. Q.; Liu, D. P.; Li, L.; Xiong, L. Z.; Zhou, J. H.; Huang, J. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 2021, 13, 43144–43154.

58

Li, E. L.; Lin, W. K.; Yan, Y. J.; Yang, H. H.; Wang, X. M.; Chen, Q. Z.; Lv, D. X.; Chen, G. X.; Chen, H. P.; Guo, T. L. Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl. Mater. Interfaces 2019, 11, 46008–46016.

59

Wang, Y.; Yang, J.; Ye, W. B.; She, D. H.; Chen, J. R.; Lv, Z. Y.; Roy, V. A. L.; Li, H. L.; Zhou, K.; Yang, Q. et al. Near-infrared-irradiation-mediated synaptic behavior from tunable charge-trapping dynamics. Adv. Electron. Mater. 2020, 6, 1900765.

60

Gao, S.; Liu, G.; Yang, H. L.; Hu, C.; Chen, Q. L.; Gong, G. D.; Xue, W. H.; Yi, X. H.; Shang, J.; Li, R. W. An oxide schottky junction artificial optoelectronic synapse. ACS Nano 2019, 13, 2634–2642.

File
12274_2022_4132_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2021
Revised: 14 December 2021
Accepted: 02 January 2022
Published: 10 March 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61822405, 62074111), the Science & Technology Foundation of Shanghai (Nos. 19JC1412402, 20JC1415600), Shanghai Municipal Science and Technology Major Project (No. 2021SHZDZX0100), Shanghai Municipal Commission of Science and Technology Project (No. 19511132101), and the support of the Fundamental Research Funds for the Central Universities. The authors are also thankful for the support of Testing & Analysis Center, School of Materials Science and Engineering, Tongji University.

Return