Journal Home > Volume 15 , Issue 6

Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functionalities. Here, large-scale flexible monolayer MoS2 devices integrating photodetectors and optoelectronic synapses over the entire visible spectrum in one device have been realized, which can be used in photodetection, optical communication, artificial visual perception system, and optical artificial neural network. By modulating gate voltages, we enable MoS2-based devices to be photodetectors and also optoelectronic synapses. Importantly, the MoS2-based optoelectronic synapses could implement many synaptic functions and neuromorphic characteristics, such as short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), long-term potentiation (LTP)/long-term depression (LTD), and “learning-experience” behavior. Furthermore, an associative learning behavior (the classical conditioning Pavlov’s dog experiment) was emulated using paired stimulation of optical and voltage pulses. These results facilitate the development of MoS2-based multifunctional optoelectronic devices with a simple device structure, showing great potential for photodetection, optoelectronic neuromorphic computing, human visual systems mimicking, as well as wearable and implantable electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Gate-tunable large-scale flexible monolayer MoS2 devices for photodetectors and optoelectronic synapses

Show Author's information Na Li1,2Congli He3( )Qinqin Wang2,4Jianshi Tang5,6Qingtian Zhang5Cheng Shen2,4Jian Tang2,4Heyi Huang5Shuopei Wang1,2Jiawei Li2,4Biying Huang2,4Zheng Wei2,4Yutuo Guo2,4Jiahao Yuan2,4Wei Yang2,4,7Rong Yang1,2,7Dongxia Shi2,4,7Guangyu Zhang1,2,4,7( )
Songshan Lake Materials Laboratory, Dongguan 523808, China
Beijing National Laboratory for Condensed Matter Physics, Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
School of Integrated Circuits, Beijing Innovation Center for Future Chips (ICFC), Tsinghua University, Beijing 100084, China
Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China

Abstract

Photodetectors and optoelectronic synapses are vital for construction of artificial visual perception system. However, the hardware implementations of optoelectronic-neuromorphic devices based on conventional architecture usually suffer from poor scalability, light response range, and limited functionalities. Here, large-scale flexible monolayer MoS2 devices integrating photodetectors and optoelectronic synapses over the entire visible spectrum in one device have been realized, which can be used in photodetection, optical communication, artificial visual perception system, and optical artificial neural network. By modulating gate voltages, we enable MoS2-based devices to be photodetectors and also optoelectronic synapses. Importantly, the MoS2-based optoelectronic synapses could implement many synaptic functions and neuromorphic characteristics, such as short-term memory (STM), long-term memory (LTM), paired-pulse facilitation (PPF), long-term potentiation (LTP)/long-term depression (LTD), and “learning-experience” behavior. Furthermore, an associative learning behavior (the classical conditioning Pavlov’s dog experiment) was emulated using paired stimulation of optical and voltage pulses. These results facilitate the development of MoS2-based multifunctional optoelectronic devices with a simple device structure, showing great potential for photodetection, optoelectronic neuromorphic computing, human visual systems mimicking, as well as wearable and implantable electronics.

Keywords: MoS2, photodetector, flexible devices, gate-tunable, optoelectronic synapse

References(40)

1

Leydecker, T.; Herder, M.; Pavlica, E.; Bratina, G.; Hecht, S.; Orgiu, E.; Samorì, P. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 2016, 11, 769–775.

2

Tan, H. W.; Liu, G.; Yang, H. L.; Yi, X. H.; Pan, L.; Shang, J.; Long, S. B.; Liu, M.; Wu, Y. H.; Li, R. W. Light-gated memristor with integrated logic and memory functions. ACS Nano 2017, 11, 11298–11305.

3

Tan, H. W.; Liu, G.; Zhu, X. J.; Yang, H. L.; Chen, B.; Chen, X. X.; Shang, J.; Lu, W. D.; Wu, Y. H.; Li, R. W. An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater. 2015, 27, 2797–2803.

4

Zhou, F. C.; Zhou, Z.; Chen, J. W.; Choy, T. H.; Wang, J. L.; Zhang, N.; Lin, Z. Y.; Yu, S. M.; Kang, J. F.; Wong, H. S. P. et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782.

5

Gu, L. L.; Poddar, S.; Lin, Y. J.; Long, Z. H.; Zhang, D. Q.; Zhang, Q. P.; Shu, L.; Qiu, X.; Kam, M.; Javey, A. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 2020, 581, 278–282.

6

Wang, H. L.; Liu, H. T.; Zhao, Q.; Ni, Z. J.; Zou, Y.; Yang, J.; Wang, L. F.; Sun, Y. Q.; Guo, Y. L.; Hu, W. P. et al. A retina-like dual band organic photosensor array for filter-free near-infrared-to-memory operations. Adv. Mater. 2017, 29, 1701772.

7

Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

8

Kumar, M.; Lim, J.; Kim, S.; Seo, H. Environment-adaptable photonic-electronic-coupled Neuromorphic angular visual system. ACS Nano 2020, 14, 14108–14117.

9

Gao, S.; Liu, G.; Yang, H. L.; Hu, C.; Chen, Q. L.; Gong, G. D.; Xue, W. H.; Yi, X. H.; Shang, J.; Li, R. W. An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 2019, 13, 2634–2642.

10

Wang, Y.; Lv, Z.; Chen, J. R.; Wang, Z. P.; Zhou, Y.; Zhou, L.; Chen, X. L.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.

11

Wu, Q. T.; Wang, J. W.; Cao, J. C.; Lu, C. Y.; Yang, G. H.; Shi, X. W.; Chuai, X. C.; Gong, Y. X.; Su, Y.; Zhao, Y. et al. Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater. 2018, 4, 1800556.

12

Hu, L. X.; Yang, J.; Wang, J. R.; Cheng, P. H.; Chua, L. O.; Zhuge, F. All-optically controlled memristor for optoelectronic neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2005582.

13

Wang, Y.; Yin, L.; Huang, W.; Li, Y. Y.; Huang, S. J.; Zhu, Y. Y.; Yang, D. R.; Pi, X. D. Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 2021, 3, 2000099.

14

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

15

Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102–1120.

16

Kufer, D.; Konstantatos, G. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett. 2015, 15, 7307–7313.

17

Wang, X. D.; Wang, P.; Wang, J. L.; Hu, W. D.; Zhou, X. H.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 2015, 27, 6575–6581.

18

Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W. D.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 2017, 13, 1700894.

19

Tran, M. D.; Kim, H.; Kim, J. S.; Doan, M. H.; Chau, T. K.; Vu, Q. A.; Kim, J. H.; Lee, Y. H. Two-terminal multibit optical memory via van der Waals heterostructure. Adv. Mater. 2019, 31, 1807075.

20

Lee, J.; Pak, S.; Lee, Y. W.; Cho, Y.; Hong, J.; Giraud, P.; Shin, H. S.; Morris, S. M.; Sohn, J. I.; Cha, S. et al. Monolayer optical memory cells based on artificial trap-mediated charge storage and release. Nat. Commun. 2017, 8, 14734.

21

Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.

22

Wang, S. Y.; Chen, C. S.; Yu, Z. H.; He, Y. L.; Chen, X. Y.; Wan, Q.; Shi, Y.; Zhang, D. W.; Zhou, H.; Wang, X. R. et al. A MoS2/PTCDA hybrid heterojunction synapse with efficient photoelectric dual modulation and versatility. Adv. Mater. 2019, 31, 1806227.

23

He, H. K.; Yang, R.; Zhou, W.; Huang, H. M.; Xiong, J.; Gan, L.; Zhai, T. Y; Guo, X. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 2018, 14, 1800079.

24

Zhai, Y. B.; Yang, X. Q.; Wang, F.; Li, Z. X.; Ding, G. L.; Qiu, Z. F.; Wang, Y.; Zhou, Y.; Han, S. T. Infrared-sensitive memory based on direct-grown MoS2-upconversion-nanoparticle heterostructure. Adv. Mater. 2018, 30, 1803563.

25

Jiang, J.; Hu, W. N.; Xie, D. D.; Yang, J. L.; He, J.; Gao, Y. L.; Wan, Q. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 2019, 11, 1360–1369.

26

Cheng, Y. C.; Li, H. J. W.; Liu, B.; Jiang, L. Y.; Liu, M.; Huang, H.; Yang, J. L.; He, J.; Jiang, J. Vertical 0D-perovskite/2D-MoS2 van der Waals heterojunction phototransistor for emulating photoelectric-synergistically classical pavlovian conditioning and neural coding dynamics. Small 2020, 16, 2005217.

27

Xie, D. D.; Wei, L. B.; Xie, M.; Jiang, L. Y.; Yang, J. L.; He, J.; Jiang, J. Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 2021, 31, 2010655.

28

Wang, T. Y.; Meng, J. L.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 2020, 7, 1903480.

29

Islam, M. M.; Dev, D.; Krishnaprasad, A.; Tetard, L.; Roy, T. Optoelectronic synapse using monolayer MoS2 field effect transistors. Sci. Rep. 2020, 10, 21870.

30

Wang, Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193–7199.

31

Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717.

32

Phillips, J. C. Stretched exponential relaxation in molecular and electronic glasses. Rep. Prog. Phys. 1996, 59, 1133–1207.

33

Liu, G.; Wang, C.; Zhang, W. B.; Pan, L.; Zhang, C. C.; Yang, X.; Fan, F.; Chen, Y.; Li, R. W. Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater. 2016, 2, 1500298.

34

Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.

35

Tang, J. S.; Yuan, F.; Shen, X. K.; Wang, Z. R.; Rao, M. Y.; He, Y. Y.; Sun, Y. H.; Li, X. Y.; Zhang, W. B.; Li, Y. J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: Fundamentals, progress, and challenges. Adv. Mater. 2019, 31, 1902761.

36

Tang, J.; He, C. L.; Tang, J. S.; Yue, K.; Zhang, Q. T.; Liu, Y. Z.; Wang, Q. Q.; Wang, S. P.; Li, N.; Shen, C. et al. A reliable all-2D materials artificial synapse for high energy-efficient neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2011083.

37

Yang, Y. C.; Chen, B.; Lu, W. D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 2015, 27, 7720–7727.

38

He, C. L.; Tang, J.; Shang, D. S.; Tang, J. S.; Xi, Y.; Wang, S. P.; Li, N.; Zhang, Q. T.; Lu, J. K.; Wei, Z. et al. Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing. ACS Appl. Mater. Interfaces 2020, 12, 11945–11954.

39

John, R. A.; Liu, F. C.; Chien, N. A.; Kulkarni, M. R.; Zhu, C.; Fu, Q. D.; Basu, A.; Liu, Z.; Mathews, N. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 2018, 30, 1800220.

40

Park, H. L.; Lee, Y.; Kim, N.; Seo, D. G.; Go, G. T.; Lee, T. W. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 2020, 32, 1903558.

File
12274_2022_4122_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2021
Revised: 10 December 2021
Accepted: 30 December 2021
Published: 21 February 2022
Issue date: June 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors acknowledge the financial supports from the Key-Area Research and Development Program of Guangdong Province (No. 2020B0101340001), the National Natural Science Foundation of China (Nos. 61888102, 11834017, 51901025, and 12074412), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (No. XDB30000000), and Post-doctoral Innovative Talent Support Program (No. BX2021351). We acknowledge Dr. Shuang Gao and Chen Ouyang for their helpful discussion in optic-electronic measurement.

Return